学年

教科

質問の種類

数学 高校生

【】でかこったとこなのですが、なにをやってるのかよくわかりません。教えて欲しいです!

+d. y=x 答! 例題 基本の 135 an+1=pan+(nの1次式) 型の漸化式 a=1, an+1=3an+4n によって定められる数列{an} の一般項を求めよ。 p.464 / 基本 34 4基本例題 34 の漸化式 an+1=pan+gで,g が定数ではなく,nの1次式となっ ている。 このような場合は, n を消去するために 階差数列の利用を考える。 漸化式のnをn+1とおき, a +2 についての関係式を作る。 これともとの漸化式 との差をとり,階差数列{an+1-an} についての漸化式を処理する。 また,検討のように, 等比数列の形に変形する方法もある。 CHART an+1=3an+4n 漸化式 (.. = part (n の1次式)階差数列の利用 nの吹式 ① とすると 2=3an+1+4(n+1) ...... 2 an+2-an+1=3(an+1-an)+4 an+2= ②①から anti-an=bn とおくと これを変形すると また PHZ bn+1=36+4 bn+1+2=3(6n+2) b1+2=a2-a1+2=7-1+2=8 よって、数列{6m+2}は初項 8, 公比3の等比数列で b+2=83-1 すなわち bn=8•3"-1-2 ①のn に n+1 を代入す ると②になる。 差を作り, nを消去する。 <{bn}は{an}の階差数列 。 α=3a+4 から α=-2 <a2=3a+4・1=7 (*) n≧2のとき n-1 an=a1+Σbk y=x n≧2のとき n-1 an=a1+ (8.3k-1-2)=1+ 8(3-1-1) -2(n-1) k=1 3-1 である。 =4・3-1-2n-1 ③ n=1のとき 4・3°-2・1-1=1 a =1であるから, ③はn=1のときも成り立つ。 ① 初項は特別扱い う。 したがって an=4.3-1-2n-1 1 章 漸化式数列 x-4 =x 11x 三点 移動 図 (*) を導いた後, an+1-an=8•3-1-2 に ① を代入してan を求めてもよい。 ると 4.-(αrn+B)} を等比数列とする解法 例題はan+1=pan+(nの1次式) の形をしている。 そこで, f(n)=an+βとして, =3+4n, an+1-f(n+1)=3{an-f(n)} の値を定める。 ⑩から ゆえに an+1_{α(n+1)+B}=3{an-(an+B)} これと an+1=3an+4n の右辺の係数を比較して an+1=3an-2an+α-2β α=-2, β=-1 ...... A の形に変形できるように α,β -2c=4,α-2β=0 ゆえに f(n)=-2n-1 より、数列{an- (−2n-1)} は初項 α1+2+1=4, 公比3の等比数列であるから an-(-2n-1)=4.3n-1 an=4.3" -2n-1 したがって 02-2 2c 106 +3によって定められる数列{a} の一般項を求めよ。

解決済み 回答数: 1
数学 高校生

この問題、どうして3の n+1乗で割るのですか?

468 基本 例題 36 amt = ban+g” 型の漸化式 考えてみよう 指針 漸化式 an+1=pan+f(n) において, f(n)=g" の場合の解法の手順は a1=3, an+1=2an+3 +1 によって定められる数列{an} の一般項を求めよ。 00000 基本 例題 - f(n)= q an = - ②2] = 0, とおくと burl=0+1/ → CHART 漸化式an+1=pan+α” 両辺を g"+1 で割る ①f(n) に n が含まれないようにするため, 漸化式の両辺を Q7+1で割る。 antp.an+1 g+1 = g gg" a1= 15 = 5 指針 an+ 〔信州大] 基本 34 基本 42 45. ar となり,nが含まれない。 ・bn+1=b+の形に帰着。 1 ②2 p. an+1 an+1=2an+3n+1 の両辺を3n+1で割ると 3n+1 23 83 ar +1 3' 解答 an=bm とおくと 3n bn+1 == 12/20m+1 3 (S+ これを変形すると bn+1-3= // (bn-3) 2 3 また b-3=1-3-33-3-2 Q= よって,数列{b,-3} は初項-2,公比 / の等比数列で an+1=pantq など 既習の漸化式に帰着 させる。 特性方程式 a=1+1から ま > 2an 20-1.9 3+1 C 品 指針の方 an+ 解答 ①と |a=3 と 2n-1 bn-3=-2 ゆえに an 3n 2\n-1 3". 3-21 よって an=3"bn=3.3"-3・2・2n-1(*)=3n+1-3.2 別解 an+1=2an+3+1 の両辺を 2n+1で割ると an+1 an 2n+1 (+ =3.3.2. 2-1 3-1 lan+1=pan+gは、 辺を+1で割る an 2n = b とおくと bn+1=bn+ 3n+1 2 また b1= a1 3 = でも解決できるが、 21 2 差数列型の漸化式の よって, n≧2のとき n_1/3 \k+1 k=12 3 n-1 n1/3 \2 3\k-1 k=1 処理になるので,計算 上の解答と比べ や面倒である。 3 = + 2 =31 2 33-1 n=1のとき 3(2/2)-3-2127 b="から,①はn=1のときも成り立つ。 したがって an=2"bn=3.3"-3・2"=3" + 1-3.2" 注意

解決済み 回答数: 1