学年

教科

質問の種類

数学 高校生

数Cの質問です! 例題ではメネラウスの定理を使う別解がありますが practiceではその別解がありません なぜ例題はメネラウスの定理で解けて practiceは解けないのかを教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

08 基本 例題 57 交点の位置ベクトル (空間) 四面体 OABCにおいて, OA=d, OB=1, OC=c とする。 線分ABを 12 に内分する点を L, 線分BCの中点をMとする。 線分AM と線分 C の交点をPとするとき,OPをd,,こを用いて表せ。 p.87 基本事項 4. p. 105 基本事項 1 基本29 基本 59 CHART & SOLUTION 交点の位置ベクトル 2通りに表し 係数比較 Momo33 平面の場合 (基本例題 29) と同様に, AP: PM=s : (1-s), CP:PL=t: (1 - t) として、 点Pを線分AMにおける内分点, 線分 CL における内分点の2通りにとらえ, OP ズーム べ りに表す。 解答 OL-20A+OB+16 a+ 3 3 1+2 OMOB+OC-12/26+2/28 2 AP:PM=s: (1-s) とすると OP= (1-s)OA+sOM =(-s)a+s(+1) =(1-s)a+sb+sc CP:PL=t: (1-t) とすると 0 別解 ABMと直線LC にメネラウスの定理を用い 第解こ内 C ると AL BC MP LB CM PA =1 と C S A 2 よって 1.4.M-1 12MP 71 1-S M ゆえに,MP=PA となり、 1-t 2 B Pは線分AM の中点である。 よって OP=OA+OM ① 2 10 6+c 2 2 OP= (1-1)0€+10L = (1-1)+(a+16) ^±±²à±±±±± 2 - ta+b+(1-1)c ・② ①,②から (1-sat/s6+1/2sc=1/21+1/316+(1-1) 4点 0, A, B, Cは同じ平面上にないから t 同じ平面上にない4点0 A(a),B(b),C(c)に対 し、次のことが成り立つ。 sa+to+uc F = s'a+t'б+u'c Je 1-s= 2 1-8-1, -1, -1-1 1-5=1321 1/28-1/3を連立して解くと S=1/21-22 03 AM SE t= これは, 12s=1-1 を満たす。ゆえに OP = 1/24 + 1/6+1/20 t', u' は実数) PRACTICE 57 9 たす点とする。 u=u' (s, t, u,s', 四面体 OABC の辺 AB, BC, CA を 3:22:31:4 に内分する点を,それぞれD, EF とする。 CDとEFの交点をHとし, OA=d,OB=6,OC=2とする。このと ベクトルOH を a, b, c を用いて表せ。 土

未解決 回答数: 0
数学 高校生

(1)(2)ともにまったく分からないので教えてください!

[大] 大] 重要 例題 9 二項定理の利用 (1) 101 ' の下位5桁を求めよ。 (2)2 00で割った余りを求めよ。 CHART & THINKING のののの 23 基本 (1),(2) ともに, まともに計算するのは大変。 (1) は,次のように変形して、 二項定理を利用する。 1011= (100+1)100= (1+102) 100 展開した後, 各項に含まれる 10 に着目し, 下位5桁に関係する箇所のみを考える。 (2)も二項定理を利用するが,どのようにすればよいだろうか? →900=302 であることに着目し,2930-1 と変形して考えよう。 解答 (1) 1011=(100+1)100= (1+102) 100 =1+100C1・102+100C2・10+100C3・10°+100C4・10°++10200 =1+100C1・102+100C2・10+10%(100Cs+100C4 ・ 102 +... +10194) ここで, a=100C3 +100C4・102 +…+10194 とおくとaは自然数で 101100 = 1+10000 + 49500000 +10°α =10001+49500000 +10°a =10001+105(495+10a) 10 (495+10a) の下位5桁はすべて 0 である。 よって, 101100 の下位 5桁は 10001 (2) 2945(30-1)45=(-1+30)45 =(-1)^5+45Ci (−1)44・30+45C2(-1)43・302+45C3(-1)42・303 ■■ 1章 1 3次式の展開と因数分解,二項定理 分散式は、 +…+45C44(-1)・304+3045 第3項以降の項はすべて 302=900で割り切れる。 また,(-1)45=-1, -1) =1であるから -1+45・1・30=1349=900・1 +449 よって, 2945 を900で割った余りは 449 大←第1項と第2項の和は 900 より大きい。 計算への応用 INFORMATION 上と同じ考え方で, 複雑な計算を暗算で行うことができる。 例えば,9992 は 9992=(1000-1)=1000000-2000+1=998001, 4989×5011 は 4989×5011=(5000-11)×(5000+11)=50002-11=25000000121=24999879 と計算 できる。

回答募集中 回答数: 0
数学 高校生

ここの2番の書いてある意味がわからないので,一つ一つ教えて欲しいです。

重要 xy 例題 21 内積を利用したux+vy の最大・最小問題 00000 平面上に点A(2,3)をとり、更に単位円x2+y2=1上に点P(x, y) をと る。また、原点を0とする。 2つのベクトル OA, OP のなす角を0とすると き内積 OA・OPを0のみで表せ。 (2) 実数x, y が条件 x +y2=1 を満たすとき, 2x+3yの最大値、最小値を求め 指針 [愛知教育大 〕 (1)Pは原点Oを中心とする半径1の円 (単位円) 上の点であるから |OP|=1 (2) (1)は(2)のヒント A(2,3),P(x, y) に注目すると 2 x +3y = OA・OP かくれた条件-1≦cos 0≦1 を利用して, OA・OPの最大・最小を考える。 基本11 1 章 3 ベクトルの内積 解答 OA・OP=|OA||OP|cose =√13cose (2)x2+y=1 を満たす x,y に | (1) |OA| =√22+32 = √13, |OP|=1から YA A(2,3) 内積の定義に従って計算。 対し, OP = (x,y) DA = (2,3) として2つのベ クトル OA, OP のなす角を とすると, (1) から -10 1 x 2x+3y=OA・OP=√13cos 200 20°180°より, -1≦cos≦1であるから, 2x+3y の 0=0°のとき最大, 最大値は 13 最小値は13 0=180°のとき最小。 |-|OA||OP|SOA・OP k 別解 1. 2x+3y=kとおくと 2 y= -x 3 3 Fonie |OA||OP| これをx2+y2=1 に代入し, 整理すると 13x24kx+k2-9=0 ...... ① から求めてもよい (p.612 重要例題 19 (1) 参照)。 20 xは実数であるから, xの2次方程式 ① の判別式をD xは実数であるから,x とすると D≧0 D =(-2k-13(k-9)=-9(k-13) であるから k2≦13 よって√13≦k≦√13 別解2. (x,y)= (cos 0, sin01) と表されるから 2次方程式が実数解を もつ 実数解⇔ D≧ (数学Ⅰ)である 三角関数の合成 ( 数学II) 2x+3y=2cos01+3sinA=√22+32sin(01+α)=√13sin(01+α) 3 2 ただし COS α= √13 sina= √13 1main (+α) ≦1であるから -√13≦2x+3y≦√130°≦0,<360° 2 =2を満たすとき, ax + by

未解決 回答数: 1
数学 高校生

どうして、底を2にするんですか??

重要 例題 38 ant = pa," 型の漸化式 | a1=1, an+1=2√an で定められる数列{an} の一般項を求めよ。 00000 【類近畿大 指針 がついている形, an² や an+13 など 累乗の形を含む漸化式 an 解法の手順は an+1=pa ① 漸化式の両辺の対数をとる。 an の係数かに注目して、底がりの対数を考える。 10gpan+1=10gpp+logpang すなわち 10gpan+1=1+glogpan 2 10gpan=bn とおくと bn+1=1+gbn → -logeMN = logM+log.N loge M=kloge M bn+1=bn+▲の形の漸化式 (p.464 基本例題 34 のタイプ)に帰着。 対数をとるときは, (真数)>0 すなわち a">0であることを必ず確認しておく。 CHART 漸化式 αn+1=pan" 両辺の対数をとる α=1>0で,n+1=2√an (>0) であるから,すべての自 解答然数nに対してan>0である。 よって, an+1=2√an の両辺の2を底とする対数をとると 10gzAn+1=10g22√an log2an+1=1+110gzan 2 bn+1=1+1/26n ゆえに 初 10gzan=bn とおくと これを変形して bn+1-2=(bn-2) ここで b1-2=10g21-2=-2 > 0 に注意。 厳密には,数学的帰納 で証明できる。 log₂(2.an) =log22+ log. 特性方程式=1+10 基本 α=2, (1) n (2) ar 指針 解答 よって, 数列 {b,-2} は初項 -2,公比 1/2の等比数列で n-1 b-2=-20 =-2(12) - すなわち bn=2-22- を解くと α=2 12 したがって, 10gzan=2-22 から an=22-22- \n-1 =21- logaan-pan-d 早 検 PLU anan+1 を含む漸化式の解法 実討 anan+1 のような積の形で表された漸化式にも 例えば 両辺の対数をとるが有効である。 LON

未解決 回答数: 1