学年

教科

質問の種類

数学 高校生

数IIの三角関数の合成の利用の問題です。 (2)なのですが、解説を見ても理解ができなかったため、解説をお願いします。

(1) sin-cos0 = 1 002 のとき,次の方程式、不等式を解け。 例題 163 三角関数の方程式・不等式 〔6〕・・・ 合成の利用 **44 (2) 2sin(+) 6 +2cos√3 思考プロセス Action>> a sin0+ bcos, r sin(0+α) 既知の問題に帰着 サインとコサインを含む式 (1) sin-cos 0=1=> 合成 サインのみの式 sin (0- = 1 (2) まず 0 のみの式にしてみる。 を含む式… 6 (1) sine-cos =√√2 sin(0) であるから,与式は y 例題 O 162 sin(0) = 1 √2 例題 148 Π 6- =α とおくと,0≦02 より AUGLS7 ≤a< π 4 4 4 URSS π 3 この範囲で sinα = を解くと a = 2 TO π 3 6- π より 4 4 例題 162 (2) 2 = Π 4 " 2sin(+)+2cos= = √3 sin+3cos cose +2 cos COSO) + 2070200 0 = πT " 5809 π 44 π 2 3 sino + 2 2 12 よって, 与式は = = 2/3 sin (0+) JT 2√3 sin (0+)2√3 b5 sin (0+1) ≥ 1/1 2007 例題 148 0+ 8 + 1 = Π π =α とおくと,0≦02 より 3 3 1/12 Ra この範囲でsina 1/2 を解くと M 5 π, 3 6 1 sa≤or, 1x ≤a< 3 13 6 元 T Π T 5 13 TC 7 π, 3 < 6 6 TC 3 31 したがって TC 0≤0≤ 11 29 1630≦2のとき、次の方程式、不等式を解け。 (1) 3 sine-cos = -1 π P 023080 Action a Wy=sind y=2sin サイン& → 050 川 y=s X Π 4 よっ L 三角関数の合成 УА P 3 12 C 2.3 π У 3 ¦ √3 x F 13 1x

回答募集中 回答数: 0
数学 高校生

数IIの微分の範囲です。 x=4/3aまでは分かるのですが、その後の[1][2][3]のところが全くわかりません。M(a)=f(1)とかの操作が何をしてるのかわかりません。 解説よろしくお願いします。

基本例題 213 係数に文字を含む 3次関数の最大・最小 ①①①①① aを正の定数とする。3次関数f(x)=x-2ax2+α'x の 0≦x≦1における最大 値M (α) を求めよ。 [類 立命館大 ] 基本 211 重要 214 指針文字係数の関数の最大値であるが,か.329 の基本例題211 と同じ要領で, 極値と区間の端 での関数の値を比べて 最大値を決定する。 f(x) の値の変化を調べると, y=f(x)のグラフは右図のようにな る(原点を通る)。ここで, x=1/3以外にf(x)=f( 3 (これをαとする) があることに注意が必要。 解答 a 3' 合分けを行う。 よって, f'(x)=3x²-4ax+a² =(3x-a)(x-a) f'(x)=0 とすると a α(// <a)が区間 0≦x≦1に含まれるかどうかで場 a>0 であるから, f(x) の増減表 は右のようになる。 x= ここで、x=1/3以外にf(x)=2 f(x)=1/27から ゆえに a 3' x- 3 1</o/ すなわちa>3のとき 3 112] 12/2016/01/314 すなわち2014/12 sisa a 4 2 1-20+ a² x a f'(x) + f(x) 2 x³-2ax² +a²x- 7 ≦a≦3のとき ... [0</1/24 <1 すなわち0<a<2のとき 30</a<1 以上から 4 27 a (x-10/31) 2(x-212/30)=0x401/3であるから したがって、f(x) の 0≦x≦1における最大値 M (a) は a 3 0 |極大 4 27 以外にf(x)=1を満たすxの値を求めると -a³=0 Sw I 注意(*) 曲線 y=f(x) と直線y=d' は, x=- a を満たす a 極小 0 0 0<a<2,3<a のとき M(a)=a²-2a+1 4 M(a) = 27 x= M(a)=f(1) ≦a≦3のとき M(a)=(1/3) M(a)=f(1) -a³ 2 + √( ²3² ) = ²3² (-²3 3 a) ² = 24/7 @² [1] 34 0 で割り切れる。このことを利用して因数分解している。 f(x)=x(x2-2ax+α²) =x(x-a)^ から [2]y 4 2703 YA [3] YA 4 27031 I -a²-2a+1 U 1 a 3 - 10/3 最大 a T T 1 0 I alm 3 1 最大 a 1 a a²2-2a+1 aax [最大] a 1 a 4 0 a 3 a x 4 4 a - 12/12 は、x=1/3の点において接するから、f(x) - 2270'は 27

回答募集中 回答数: 0
数学 高校生

高校1年生 数Ⅱ 式と証明 2の(4)と5の(3)を計算してみたのですが、答えが合いません。教えていただきたいです🙏

(1) (2a+b)x+(3a-b+5)=0 (2) (a+3)x¹+(3a-b)x+(b+c+2)=0 CF) (1) a=-1.6=2 (2) 2 次の等式がxについての恒等式となるように、 定数a, b, c, d の値を定めよ。 (1) x2+7x+6=(ax+b)(x+1) (2) ax+bx=(x-2)(x+2)+c(x+2)* (3) x²-a(x-2)²+(x-2)+c ( a(x-1)³ + (x-1)²+x-1)+d=x²+x²+*+1 (3) (1) -1,b=6 (2) a=2, b=4,c=1 (3) a=1, 6-4, c=4 (4) a=1,0=4, c=6, d=4 次の等式がxについての恒等式となるように、 定数a,b,cの値を定めよ。 d b 3x+5 (1) ²=1+1 (2)x+1+x+3 (x+1)(x+3) 4 (x+1)(x-1)2 x+1 (2) a=-3, b=-9, c-7 解答 (1) 略 (2) + WE (1) a=1, b = -1 (2) a=1, b=2 (3) a=1, b=-1, c=2 4 次の等式を証明せよ。 (1) (a²+36³)(c²+3d²)=(ac-3bd)² +3(ad+bc)² (2) a²+b²+c²_ab_bc-ca=½{(a−b)²+(b−c)²+(c −e)²} (12) 略 (3) 略 5a+b+c=0のとき, 次の等式が成り立つことを証明せよ。 (1) (a+b)(b+c)(c+α) +abc=0 (2) '+ab+b2=(ab+bc+ca) (3) a²b+c)+ b²c+a)+c²(a+b)+3abc=0 (1) 略 (2) 略 (3) 略 (x-1)2 26 29 ⑥1=1/2のとき、次の等式が成り立つことを証明せよ。 6 (1) (a+b)(c-d)=(a−b)(c+d) (2) 7 a:b:c=2:3:4, abc0 とする。 ab+bc+ca (1) の値を求めよ。 a² +6² +c² (2) 3a+2b+c=32のとき, a,b,cの値を求めよ。 (2) a=4, b=6, c=8 ab+cd ab-cd = = a²+c² a²-c² [8a> b,c>d のとき、次の不等式が成り立つことを証明せよ。 4c+bd>ad+bc 12 次の (1) (2) 13 次 (1) [14 15

回答募集中 回答数: 0
数学 高校生

ヨウ化水素の物質量の変化の図示が分かりません

基本例題34 電離定数 0.030mol/Lの酢酸水溶液の酢酸の電離度α および水素イオン濃度を求めよ。ただし、 酢酸の電離定数を2.7×10mol/L,αは1に比べて非常に小さいものとする ■解答 188 【mol/L] の酢酸水溶液において、 酢酸の電離度がαのとき、電離す る酢酸分子は co[mol/L] なので, 生じる酢酸イオン、水素イオンも ca[mol/L] となる。 電離平衡時の 量的関係を調べ, 電離定数K の 式に代入してc, α と K の関係 式をつくり、 αを求める。 このと き、実際にαが1に比べて非常に 小さいことを確認する。 目安は α<0.05程度である。 はじめ 平衡時 0 ca (mo < 1 であり, 1-α=1 とみなされるので, 電離定数は。 ように表される。 CH₂COOH CH3COO- +H* a = √ したがって, C c(1-a) [CH3COO-] [H+] Lah Jo Ka= [CH3COOH] 2.7×10-5 0.030 [知識] グラフ 323. 平衡状態と平衡定数水素1.00mol とヨウ 素1.40molを100Lの容器に入れ、 ある温度に保 った。このときの水素の物質量の変化は、図のよ うであった。 (1) 平衡状態における水素, ヨウ素およびヨウ 化水素のモル濃度を求めよ。 (2) 減少するヨウ素および生成するヨウ化水素 の物質量の変化を図示せよ。 (3) この反応の平衡定数を求めよ。 HOKUESE [H+]=ca=0.030mol/L×0.030=9.0×10mol/L. $5 (1) 3 Tom T. &IH (8) IH A |基本|問題| 119 つ選べ。 (ア) N2O4 と NO2 の濃度の比は1:2である。 (イ) N2O4 と NO2 の圧力(分圧)の比は1:2である。 (ウ) N2O4 の濃度は一定となっている。 (エ) 正反応と逆反応の速さは等しい。 (オ) 正反応も逆反応もおこらず、反応が停止している。 2NO2 の反応 [知識 322. 平衡状態四酸化二窒素 N2O4 をある温度, 圧力に保つと, N2O4 がおこり,平衡状態に達した。 平衡状態に関する次の記述のうちから,正しいものを [mol] 2.0 物質量 ca 1.5 (ca)² c(1-a) =0.030 SCIEN 49 kieuốc (S)(ung Fossh — (R),H&+ (2);M (1) SUL (1) HOOSH+HOOT,HO (1) MOOOHO (SE 1.0 =ca² 0.5 0 324. 平衡の量的関係 一定温度で平衡状態 CHICOOH +c 酢酸 H この温度にお 酢酸1.00mc で平衡状態に達 時間 - 例題 F (1) (2) 325. 反応量と解 入れると、二酸 をP[Pa], 四 N2O4 (気) 平衡状態 平衡時⊂ この反 (1) (2) (3) [知識] 326. 条件変 よって,平 (1) 302 N2+ 2HI (4) 2SC (5) NH (2) (3) 327. 平 Im 2SO (1) SC の (2

回答募集中 回答数: 0