学年

教科

質問の種類

数学 高校生

四角で囲った部分がわからないです(Xの解) 特に二枚目の丸で囲んだ部分はどうしてこういうふうに言えるのかわからないです

354 基本 例題 223 係数に文字を含む3次関数 [類 立命館大] la を正の定数とする。 3 次関数 f(x)=x-2ax2+αxの0≦x≦1 における最大 値M (α) を求めよ。 基本 219 重要 224 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で,極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると,y=f(x) のグラフは右図のよう になる(原点を通る)。ここで, x=/1/3以外にf(x)=f(1/2)を 満たすx (これをαとする) があることに注意が必要。 a よって、1/3,α (/1/<α) が区間0≦x≦1に含まれるかどうか 3' a 3 <a a で場合分けを行う。 y4 f() O a a f'(x)=3x²-4ax+α²=(3x-a)(x-a) 解答 f(x) = 0 とすると x=147, a a 3' a>0であるから,f(x)の増減表は次のようになる。 以上から (x)はx=3 M(a)-( <a<1 すなわ <a< 2 のとき, f(x)はx=1で最大と M(a)=f(1) 0<a M Åsas 3 まずは、f'(x)=0を満た すxの値を調べ, 増減表 をかく。 <a>0から a ・<a ... ゆえに X- a x=/1/3であるから x x f'(x) + a 3 0 f(x) 大 a 0 + 極小 ここで,f(x)=x(x2-2ax+α²)=x(x-a)2から (+)-(-a), F(a)=0 3 27 -α 大 = 12/17 を満たすxの値を求めると, =1/1/3以外にf(x) 4 f(x)=から 4 x³-2ax² + a³x-17 a²=0 x3-2ax2+αx- α=0 (x-3) ( x − 4 27 (*) a)=0 0= CLAQ (*) 曲線 y=f(x) と直線 =は、x=号の y= 点において接するから、 f(x)-27 a³ 13(x- 3次関数の対称性の利目 樹 344 の参考事項で紹 の値を調べることもで 2つの極値をとる点 座標は 信 X=- 83 23 なお、p.344 で紹介 で割り切れる。このこと を利用して因数分解する とよい。 よって 3 -2a a² 0-27 a 5 Q2 3 9 x=- a 5 4 1 a a² 0 よって,f(x)の0≦x≦1における最大値 M (α) は,次のよ うになる。 3 9 13 としておきたい。 a 4 3 9 [1] 1< // すなわち α>3のとき 4 1 a -= M(a)=f(1) f(x)はx=1で最大となり 1 a²-2a+1 O 1 ・最大 大人の方針。 [1]は区間に極値をとる xの値を含まず、区間の 右端で最大となる場合 指針」 a a x 3 222は正の

未解決 回答数: 0
数学 高校生

(2)の問題でaの二乗を求めた時に出た答えを約分しちゃダメな理由とaの二乗から二乗を外さないで計算する理由を教えてほしいです!!

P.210 基本 基本 例題 132 多角形の面積 次のような図形の面積Sを求めよ。 (1) AB=6,BC=10, CD = 5, ∠B=∠C=60°の四角形ABCD (2) 1辺の長さが1の正八角形 CHART & THINKING (1) まずは右のように図をかいてみよう。 基本131 からSを、それぞ 多角形の面積はいくつかの三角形に分割するのが基本方針 だが,対角線 AC, BD のどちらで分割するのがよいだろうか? ACで分割→ △ABCに余弦定理を用いると、線分AC の 長さは求められるが,DACの面積はすぐにはわからない。 BD で分割 → △BCD は BC:CD=2:1, ∠BCD=60° に 注目すると, ∠DBCの大きさや線分 BD の長さがわかる。 これを利用して △ABD の面 積を求めてみよう。 6. 5 60° 60° B 10 C 4章 解 (1) (後半) ロンの公式を用 =4+5+6 から って =√s(s-as- (2) 正八角形の外接円の中心を通る対角線で8つの三角形に分割すればよい。 解答 (1) BCD において, BC=10, CD = 5,∠C=60°から ∠BDC=90° ∠DBC=30° BD=BCsin60°=5√3 6 5√3 157 15 22 30° 15/7 △ABD において ∠ABD= ∠ABC-∠DBC=30° 30° 60℃ 4 よって, 求める面積は B 10 60° S=△BCD+ △ABD _n 150° 150=- =1/23・5・5√3+1/23・6・5v3 sin30°=20√3 (2) 正八角形の外接円の中心を0, 1辺をAB とすると AB=1, ∠AOB=360°÷8=45° OA=OB=α とすると, OAB において, 余弦定理により 12=α²+α2-2aacos 45° 整理して 1=(2-√2)a² s150°=- ゆえに a²=- 1 2-√2 2+√2 2 よって, 求める面積は S=8△OAB=8asin45°=2(√2+1) 8.1/23a'si PRACTICE 132Ⓡ 合同な8個の三角形に分 ける。 A 1 B a 45% a αのまま代入する。 )は鈍角三 次のような図形の面積を求めよ。 (1)AD // BC, AB=5,BC=6,DA=2,∠ABC=60°の四角形ABCD (3)1辺の長さが1の正十二角形 (2)AB=2,BC=√3+1,CD=√2,B=60°,C=75° の四角形ABCD 15 三角形の面積、空間図形への応用

未解決 回答数: 1