学年

教科

質問の種類

数学 高校生

・2)の証明の「同様に」以降はなぜr≠0とだけ仮定するのですか?0≦r<lの否定になるんですか? ・1)の証明の、「」が何を言っているかわからないです。2)の何をどう利用したんですか? 本当に理解できないので簡単めに解説をお願いしたいです。😢

446の会社数は無数 基本事項 ① 最大公約数と最小公倍数 (12) 24.…… 2つ以上の整数に共通な約数を,それらの整数の公約数といい、公約数のうち最大 のものを最大公約数という。 また,2つ以上の整数に共通な倍数を,それらの整数 の公倍数といい,公倍数のうち正で最小のものを最小公倍数という。 一般に、公約数は最大公約数の約数 公倍数は最小公倍数の倍数である。 TA 注意 最大公約数をG.C.D Createst Common Divisor) または G.C.M (Greatest Common Measure), 最小公倍数を L.C.M (Least Common Multiple) ともいう。 ② 互いに素 2つの整数αの最大公約数が1であるとき, a,bは互いに素であるという。 ③3 最大公約数 最小公倍数の性質 2つの自然数a,b の最大公約数をg, 最小公倍数を1とする。 aga, b=gb' である とすると,次のことが成り立つ。 a' と'は互いに素 gdg b 21=ga'b'=a'b=ab' 解説 <最大公約数、最小公倍数> 上の1) 2) を証明してみよう。 それには,まず2) から示す。 [2) の証明]a,b,c, ······ の最小公倍数を 任意の公倍数をとする。 kを1で割ったときの商を Q, 余りをrとすると a,bはgでひろいろ なかった素因数の あつまり ~ 1 Y = 77₂ 318 7 きずり h=qlty...... ①,0ょくし -0 もしもの倍数であるから, k=ak', l=gl' (k', I'は整数)と表され axsh Tabの任にかけた rkgl=g(k-ql ) より はαの倍数である。 ab=gl 同様に,b, G…. の倍数であるから、はa,b,c,….. の公倍 w z C 数である。 「ここで、y=0 と仮定すると、より小さい正の公倍数rが存 在することになるが,これはが最小公倍数であることに矛盾する。」 ゆえに = 0 よって, ① はん=ql となり, kは1の倍数である。 [1) の証明] α, b, c, ······ の最大公約数を g, 任意の公約数をmとする。 「1をgとmの最小公倍数とすると, はgとmの公倍数であるから 2) より αはもの倍数である。 同様に, b, c, ...... もの倍数である。 したがって は a, b, C....... の公約数である。 ここでgが最大の公約数であるから l≤g 12g ゆえに lg 一方, 1はgとmの最小公倍数であるから よって,gとmの最小公倍数がg に一致し, gはmの倍数である。 すなわち, 任意の公約数は最大公約数g の約数である。 大きい所どり! xy X² Yo X'Y = l この等式については、 次の 「§18 整数の割 り算と商および余り」 で詳しく学習する。 <背理法。 Fag (A)) 1) を示すにぼg と mの最小公倍数が であることを示せば よい。 ASB かつ A≧B ならば A=B この論法は整数の性 質に関する証明でよ

回答募集中 回答数: 0
数学 高校生

右側のステップ4のx=aを代入するとのところからわかりません

第6章 微分法と積分法 第3節 積分法 8-1 定積分の定義 定積分 ●定積分とは| ② グラフy=f(x)とx軸、y軸、y軸に平行な直線で囲まれた部分の 面積は、関数f(x)とどのような関係にあるか? f(x)=1 f(x)=x f(x)=x+1 f(x)=x² f(x)=x³ を求める計算! y=f(x), x軸で囲まれた 10~xの面積 横 C te² 1/2x2x 1/3x ² 3 ●積分と微分の関係 ? a≦x≦bの範囲でf(x)≧0のとき一簡単にするため y=f(x)、x軸、x=a、x=bで 囲まれた部分の面積Sを求めよう! step. 1 αからxまでの面積をS(x) とする。 S(th) O ol a y 2 求める面積を微分すると、 関数f(x)になる y=f(x)のグラフで囲まれた面積を計算するときは、 微分の逆をする x x 1x S(xXx) 積分する x+1 xh S(b)=S b S(2ch) step. 2 xからx+hの間で、f(x)の最大値をM (x,f(x)) 最小値をm とする y=f(x) step.3 aubの面積 右の図より、 mh≤S(x+h)-S(x) ≤Mh S(x+h)-S(x) -SM h h→0のとき ms. (f(x)] [5'(x)] よって step.4 境界線を横行すると面積この逆 両辺をxで不定積分すると、 $CON S(x)=f(x)dx=F(x)+C x=a を代入すると よって f(x) [S'(x)=f(x) 面積を微分すると. 境界線になる S(a)=F(a)+C 0=F(a)+C C=-F(a) S(x)=F(x)-F(a) 範囲a~b ※f(x)を積分して、それに を代入したものから (x) x を代入したものを 引いてね、という記号 S(x+h) -S(x) ※F(x) という数に x=0を代入したものから a x ↑ ●定積分の定義と記号 <定積分の定義> F'(x)=f(x)のとき f(x)dx=[F(x]=F(b)-F(a) を代入したものを 引いてね、という記号 x+h すなわち m W 9 x=bを代入すると x+h S(b)=F(b)-F(a) S=F(b)-F(a) [[例13] 面積Sは、こうやって 計算することができる! ※ただし、 20に限る 14 a x=aからx=bまで 関数f(x) をxで 定積分する、という

回答募集中 回答数: 0