学年

教科

質問の種類

数学 高校生

この問題の(2 でなぜ選択肢2が成り立つのか分かりません。照明があるのですがらあまりによって何がわかり、どうして矛盾するのでしょうか、、?、 解説お願いします🙏

例題太郎さんと花子さんは次の証明問題について話している。 二人の会話を読んで下の 問いに答えよ。 問題 直角三角形の斜辺の長さが自然数c, その他の2辺の長さが自然数 a, b であるとき, a, b, c のうち少なくとも1つは5の倍数であることを証明せよ。 花子:直角三角形の3辺の長さといえば,三平方の定理だね。 斜辺の長さが c, そ A の他の2辺の長さがそれぞれα, bだから問題は「自然数 α,b,c が a2+b2=c2 を満たすとき, a, b, c のうち少なくとも1つは5の倍数である」 という性質を証明することだね。 C b B a 太郎:こんな性質があったなんて知らなかったよ。本当に成り立つのかな。 花子: 例えば, a=3, b=4,c=5のときは,cが5の倍数になっているね。 太郎: 他にアのときもこの性質が成り立つよ! どうやらこの性質は成り立つようだね。 じゃ あ、どうやって証明すればいいだろう。 5の倍数であることを証明するから, mを自然数と してα=5mとおいて考えればいいかな。 花子: それだと,その後どうすればいいかわからないよ。こういうときは,授業で習った 「背理法」 を使えばいいんじゃない? 太郎 : 「命題が成り立たないと仮定して, 矛盾を導く」という証明方法だったから,「 A a,b, chi B を満たし,C」と仮定すればいいね。 (1) アに当てはまる最も適当なものを,次の①~③のうちから一つ選べ。 ⑩a=1,6=2,c=√5 ① a=1,6=2,c=3 ② a=8,615,c=17 ③ a=13,6=12,c=5 (2) A B C に当てはまる組み合わせとして最も適当なものを、次の①~③のうちか ら一つ選べ。 イ A B 2+b2=c ⑩ 自然数 ① 自然数 2 ② 自然数 C 自然数 ' +62≠c2 ③無理数 a² +b² c² ²+62=c a2+b2=c a, b, c のうち少なくとも1つは5の倍数でない a, b, c のうち少なくとも1つは5の倍数である a, b, c のいずれも5の倍数でない a, b, c のうち少なくとも1つは5の倍数である 数学- 10

回答募集中 回答数: 0
数学 高校生

高一数学です。 背理法がよくわかりません。背理法の私の解釈は命題が成り立たないということをを証明したら成り立たないだから命題が成り立つね、みたいな感じなんですけどこの二つの問題ってどっちも無理数ってことを証明したいから有理数と仮定して証明した時に有理数になりました。無理数っ... 続きを読む

80 基本 例題 44 背理法による証明 00000 (1)α 6 有理数で, 6=0 とする。 √2 が無理数であることを用いて, la+b√2 が無理数であることを証明せよ。 (2)6が無理数であることを用いて、√2+√3 が無理数であることを証 明せよ。 CHART & SOLUTION 証明の問題 直接がだめなら間接で背理法 与えられた仮定から直接結論へ導くことが困難なときは, 背理法が有効。 背理法で証明する手順 1 仮定はそのままにして (1) では,「√2が無理数である」), ① p.76 基本事項 71 結論を否定する (1) では, 「a+b√2 は無理数でない」とする)。 5058 2 計算や推論により、矛盾を導く。 (1)では,√2 が有理数の和・差積商の形で表されてしまうという矛盾を導く。 なお,実数は有理数と無理数に分けられるから、無理数であることを否定すると有理数にな る。 解答 (1)a+b√2 が無理数でないと仮定すると,a+b√2 は有理 数である。 a+b√2 =c (cは有理数) とおくと, 6≠0 から √2= c-a b a,b,cは有理数であるから, c-a も有理数となり b √2 が無理数であることに矛盾する。 ゆえに,a+b√2 は無理数である。 (2)√2+√3 が無理数でないと仮定すると,√2+√3 は 有理数である。 √2+√3=r(rは有理数)とおいて,両 辺を2乗すると 5+2√6 = 2 AB=BC 変形して √6=12-5 BC 2 rは有理数であるから, 2-5 2 有理数となり√6 が無 理数であることに矛盾する。=9U9 ゆえに、√2+√3 は無理数である。 inf. 有理数の和・・ ・商は常に有理数 (p.41) であるが, 無理数の和・ 差・積・商は無理数とは限 らない。 例えば, (1+√2)+(1-√2)=2 (2+√2)-(1+√2)=1 (1+√2)×(1-√2)=-1 3√2-√2=3 など。 9 6 を導き出すために 両辺を2乗する。

解決済み 回答数: 2