学年

教科

質問の種類

数学 高校生

数学cについてです (3)番です 見にくいですが、解説の下線部までは求められたのですが、直線AB の式がどこから来たのかがわかりません どのように求めるのでしょうか

図のように ry 平面上に点A(a, 0) B(0, 6) をとり, 線分ABを T1-t:tの比に内分する点をPとする. ただし, a≧0,6≧0,0<<1 であり線分ABの長さは常に1とする. (1) 点Pの座標およびy座標をα と tで表せ (2)点A0≦a≦1の範囲で動くとき,点Pはどのような曲線上を動くか. (3)(2)で求めた曲線上の点P における接線が,直線ABに一致するとき, との関係を求めよ.また,この関係を満たしながらt が 0<t<1の範囲 で動くとき, 接点はどのような曲線上を動くか. 2 b B3 O 2 P 1-t (3) a X (名古屋市立大薬一中 / 後半省略) アステロイドの性質 アステロイド (x3+y3=1; 媒介変数表示はx=cos 0, y=sin30) は, 長さ 1の線分がx軸,y軸上に両端点がある状態で動くときに通過する領域の境界にあらわれる. 例題を解 くと,(2)が楕円,(3)後半の曲線がアステロイドになり,両者は接する(接点は(3) 前半で求めたも の傍注の図参照). 演習問題も同じ図になるが, ABの通過領域を求める計算をやってみよう. 12 1-02= y 解答圜 (1)AB=1より6=√1-a2 であるから,P(ta, (1-t)/1-a²) YA (BB (2)=ta, y=(1-t) 1-α からαを消去すると, (0-1)+( P 2 y² 2 + -=1 0-2- 1-t t² (1-t)2 1-t 抹香 y2 (3)楕円 + +2 (1-t)2 =1上のP(ta, (1-t) √1-α2) における接線は, t 1-t -S) 1- ta (1-t)√1-a2 a y = 1 すなわち -x+ (1-t)2 t √1-a2 1-t -y=1である. 楕円の接線の公式. I 一方, 直線AB は y + =1だから, 両者が一致するとき, (+) a √1-a2 AO a 1 1-a2 -=- かつ : a=√t ta 1-t √1-a2 a=√f のとき,P(x,y)=(t√t, (1-t)√1-t) となるから, 3 3 x=tz,y=(1-t) 2 23 を消して,y=(1-x)2 2 2 ∴. x3+y=1 (+)+s ←第2式からは1-4²=1-t ■(2)と(3) を重ねて描くと YA 1 2 -SD-S 1-t 2 -x³+y³= 3=1 P(+², (1-+)²) A 4 演題 (解答は p.90) 0 t 1 IC

未解決 回答数: 0
数学 高校生

2番の計算がわかんないです

基礎問 (2) n を最大にするn を求めよ. 119 確率の最大値 白玉5個,赤玉n個の入っている袋がある。この袋の中から、 2個の玉を同時にとりだすとき, 白玉1個, 赤玉1個である確率 を pm で表すことにする.このとき,次の問いに答えよ。ただし、 n≧1 とする. (1) n を求めよ. (1) DnF (nt5) (n+4) 5D 2.5.n (n+5)(n+4) 10n (n+5)(n+4) n! ncy= r!(n-r)! Dn+1= (2) 10(n+1) (n+6)(n+5) × pn (n+5)(n+4) 10n +1の形で1と大 (n+1)(n+4) n(n+6) =1+ 4-n 小を比較 n(n+6) pn+1-1= 4-n pn n(n+6) <n(n+6)>0 だから よって, n<4のとき Dn+11 符号を調べるには分 Pn 子を調べればよい |精講 条件に文字定数々が入っていると、確率は”の値によって変化する ので、最大値が存在する可能性があります. 確率の最大値の求め方 は一般に,関数の最大値の求め方とは違う考え方をします.それは, 変数が自然数の値をとることと確率≧0であることが理由です. この考え方は、 パターンとして頭に入れておかなければなりません. n=4 のとき, Ds=ps n≧5のとき,n+1<1 pn : p₁<p2<p3<p4=p5> p6> p7>....... よって, n を最大にするnは 4,5 この式をかく方がわ かりやすい その考え方とは次のようなものです. いま, すべての自然数に対してp">0 のとき, ある自然数Nで, ポイント 確率の最大値は,わって1との大小比較 n≦N-1のとき Dn+1> >1 pn pn+1 n≧N のとき, <1 pn この考え方は確率以外でも ① 定義域が自然数 ② 値域>0 をみたす関数であれば利用できます。 たとえば,f(n)=1 n(n+3) が成りたてば, nで表されている確率は, 2" Þ₁<þ2<<þN> N+1>...... などです. この関数は n=2で最大になりま すので、各自やってみましょう. が成りたちます. だから n=Nで最大とわかります. すなわち, pn Dn+1 と1の大小を比較すればよいのです. ここで, 演習問題 119 Pn+1 >1Pn+1-pn>0 Pn ですから, Pn+1-0の大小を比較してもよいのですが、 確率の式という のは、ふつう積の形をしていますので,わった方が式が簡単になるのです. ある袋の中にn個の白玉が入っていて、そのうち5個に赤い印 がついている。その袋から, 5個の玉を同時にとりだしたとき,2 個の玉に赤い印がついている確率をpm とおく ただし, n≧8と する.このとき、次の問いに答えよ. するn を求めよ.

回答募集中 回答数: 0
数学 高校生

問題の下の解説の「x,yの2次式の因数分解」 のところで、展開をしなくていいのは、 展開した式を入れ替えても答えは同じっていう 性質があるからですか?

2 因数分解/2次式 つぎの式を因数分解せよ. (酪農学園大酪農, 環境) (北海学園大工) (東北学院大・文系) (1) (a-b+c-1) (a-1)-bc (2) 4.2-13zy+10y2 +18æ-27g+18 (3)(x+2y) (æ-y)+3y-1 因数分解では最低次の文字について整理する 2文字以上が現れる式の因数分解の原則は,最低次 その文字 (複数あるときはどれか1つの文字) について整理することである. 一般に,次数の低い式の方 が因数分解しやすい. 仕 解答 xyの2次式の因数分解 原則に従えば,xか」について整理するところであるが,(3)において (x+2y) (x-y) を展開して整理するのはソンである. 「x+2y」 「x-y」 を用いて解答のように「たす きがけ」をすればよい。 (2)も, x,yの2次式の部分を因数分解すれば同様にできる(別解) 慣習 因数分解せよ,という問題では,特に指示がない限り, 係数が有理数の範囲で因数分解する. (2) (3) ((+23)(x-3) + 33-17 (1) まずcについて整理することにより, 与式= {c(a-1)+(a-b-1) (a-1)}-bc ←与式はαについては2次だが, b やcについては1次. =(a-b-1)c+(a-b-1) (a-1)=(a-b-1)(a+c-1) (2) まずェについて整理することにより, (-a+b+1)(-a-c+Uod 与式=42-(13y-18)x + (10y2-27y+18) =4x²-(13y-18)x+(2y=3) (5y=6)... x= ={x-(2y-3)}{4m-(5y-6)} 2 × ①+56 7-2 →27 ←1 -(2y-3) × -(13y-18) =(x-2y+3)(4x-5y+6) 14 -(5y-6) 注 ① におけるたすきがけで, 試行錯誤するのを避けるためには, ①= {ar-(2y-3)}{bx-(5y-6)} とおき, 展開して係数比較すればよい. æの係数は (yは定数と見る), -{(5a+26)y- (6α+36)} となり, ー (13y-18) と一致するので 5α+26=13,6a+36=18. これを解いて α= 1, 6=4となる. (3) 与式={(x+2y)-1}{(x-y)+1} てんか =(x+2y-1)(x-y+1) 【別解】 (2) [x,yの2次式の部分をまず因数分解して, (3) と同様に解くと] であるから, 4.2-13ry+10y2=(x-2y) (4π-5y) 与式= (x-2y) (4-5y) + (18-27y) +18 このときの係数も一致する. x+2yx-13y x-y →-13 12--13 0 4 -5 ={(x-2y)+3}{(4x-5y)+6} =(x-2y+3)(4x-5y+6) 2 演習題(解答はp.22) (1) (ry) (x+y-z (z+2y) を因数分解せよ. (2) 3a+26+αb +6 を因数分解すると d)( x-2y 3 4x-5y 6 × -18x-27y 13) (48 (北海道薬大) である.また, (1) である. (3)は,例題 (2) と同様 (岐阜聖徳学園大) に2通りのやり方があ (静岡産大) . ry+xz+y2+yz+3 +5y+2z+6 を因数分解すると (3) 8-18y2+10x+21y-3 を因数分解せよ.

回答募集中 回答数: 0
数学 高校生

この問題が解説を見てもよく分かりません 解説よろしくおねがいします🙇

も内 173 の 演習 例題 194 対数方程式の解の個数 00000 aは定数とする。 xの方程式 {10g2(x2+√2)}^2-210gz(x2+√2)+α=0の実数 解の個数を求めよ。 指針 前ページの演習例題 193 同様, おき換えにより, 2次方程式の問題に直す。 変数のおき換え 範囲に注意 log2(x2+√2)=tとおくと,方程式は t2-2t+a=0 (*) 基本 183 2√2の値の範囲を求め,その範囲におけるtの方程式(*)の解の個 数を調べる。それには,p.239 重要例題 149 と同様, グラフを利用する。 なお、10g2(x2+√2)=t における x と tの対応に注意する。 SELECT 解答 log2(x2+√2)=t $0.0> (Sargola) (1) ① とおくと, 方程式は t²-2t+a=0 0218.0 1108. 2+√2≧√2であるから 215 21 >01.0 311 10 10gz (x2+√2) log√2 したがって t≧ (2) E 226 227 228 229 230 231 22 233 234 また,①を満たすxの個数は,次のようになる。 =1/2のときx=0の1個, のとき x2>0であるから 2個 t2-2t+α=0から Slant (1) x2+√2=25より, x2=2√2 であるから t=1/2のとき x=0 1/1/3のときx>0 よって x=±√2-√2 -t2+2t=a 1 よって、②の範囲における, 直線 y=aを上下に動か 3 y=a 放物線y=-t2 + 2t と直線 y= a 4 a! 1 1 i して、共有点の個数を調 べる。 の共有点の座標に注意して, 01 方程式の実数解の個数を調べると, α>1のとき0個; a=1, a< a< 2 のとき2個; -12 1 2 32 共有点なし。 <t> // である共有点1個。 4 a= =2のとき3個; -<a<1のとき4個 <a 1 3 t= 2 2 \t> である共有点2個。

未解決 回答数: 0