学年

教科

質問の種類

数学 高校生

組み合わせの問題です! 階乗でやる方法なかったですか? 解説お願いします

304 基本 例題 30 整数解の組の個数(重複組合せの利用) 00000 (1) x+y+z=7 を満たす負でない整数解の組 (x, y, z) は何個あるか。 (2) x+y+z=10 を満たす正の整数解の組 (x, y, z)は何個あるか CHART & THINKING 整数解の組の個数 ○と仕切りの活用 p.294 基本事項 基本-20 (1) 直接数え上げるのは大変である。 問題を読みかえて, x, y, zの異なる3個の文字から 重複を許して7個の文字を取り出すと考えよう。 すなわち 7個の○と2個の仕切りの 順列を考え、仕切りで分けられた3つの部分の○の個数を,左から順に x, y, zとする。 例えば 〇〇〇一〇〇一〇〇には (x, y, z)=(3, 2, 2) 一〇〇〇〇〇〇〇には (x, y, z)=(0, 2, 5) がそれぞれ対応する。 (2)x,y,zが正の整数であることに注意。 (1) の考え方では0となる場合も含むから x-1=X, y-1=Y, z-1=Z とおき, 0であってもよい X≧0, 0, Z≧0 の整数解の場合((1) と同じ)に帰着させ る。これは, 10 個の○のうち, まず1個ずつを x, y, zに割り振ってから, 残った7個の ○と2個の仕切りを並べることと同じである。 また,別解のように,10個の○と2個の仕切りを使う方法でも考えてみよう。 解答 (1) 求める整数解の組の個数は, 7個の○と2個のを1列 に並べる順列の総数と同じであるから ( 別解求める整数解の組の 個数は,3種類の文字 zから重複を許して7個 る組合せの総数に等しい ら3H7=3+7-1C7=9C7 =9C2=36 (1) X = 0, Y ≧ 0,Z≧0 C=C2=36(個) 合韻高 (2)x-1=X, y-1=Y, z-1=Z とおくと このとき,x+y+z=10 から (X+1)+(Y+1)+(Z+1)=10x=x+1, y=Y+l, 重要 例題 3 次の条件を満 (1) 0<a<b CHART & 大小関係が条 (1)条件を満た ら4個の数字 (2) (1) とは違 (2,2,2,2 それらの数 重複組合せ 別解として A=a, B= (a, b, c, (A, B, C. するから, 解答 (1)1,2, 小さい順 まる。 よって、 (2) 0, 1, 2 い順に よって、 よって A= 条件 0 7! よって X+Y+Z=7, X≧0, Y≧0,Z≧0 ...... A z=Z+1 を代入。 別解 求める正の整数解の組の個数は, A を満たす0以上の整数 解 X, Y, Zの組の個数に等しいから, (1) の結果より 36個 OC (別解 10個の○を並べる。 である。 よって、

解決済み 回答数: 1
数学 高校生

解答の右側の真ん中くらいの黒の波線のところがわからないので教えてください。

実力アップ問題 138 難易度 CHECK 1 CHECK 2 CHECK 3 直角三角形 ABC は, ∠Cが直角で、 各辺の長さは整数であるとする。 辺BCの長さが3以上の素数であるとき,以下の問いに答えよ。 (1) 辺 AB, CA の長さを” を用いて表せ。 (2) tan ∠A は整数にならないことを示せ。 (千葉大) ヒント! (1) AB=c, CA = b とおくと、三平方の定理から,c=p^2+b2 となることを利用する。 (2) は,背理法を用いて証明しよう。 (1)BC=p (3以上 の素数) A ここで, tan ∠A=m (整数) と 仮定すると, 2p -=m より, p-1 ここで,AB=c, CA= b とおくと, B 三平方の定理より, 3以上の素数 c2=p2+b2 これを変形して, c-b2=p2(c, b:自然数) (c+b)(c-b)=p2 .....① ここで,c+b>c-bであり, c+b とc-bは正の整数より, ① から 2p=m(p+1)(p - 1) ......④ p の倍数 4 以上 2以上 となる。 ④の左辺はp の倍数より, ④の右辺もp の倍数となる。 しか し, p+1とp-1はp の倍数では ないので, mがp の倍数となる。 よって,m≧p ...... ⑤ m=k.p(k:正の整数)より, m≧p となるんだね。 c+b=p2 ② となる。 c-b=1 ・③ また,pは3以上の素数なので、 ②+③ より c=p2+1 2 2 ③ ③よりb=p2-1 2 2 (2)tan ∠A が整数とならないことを背 理法により示す。 tan ∠A= P B P P 2p = 2 bp2 1 P 2 p+14 P-12 ...... ・・・・⑥ となる。 以上 ⑤,⑥より,④の右辺は, m(p+1)(p-1)≧p4.2=8p となるので,これは左辺の2p に なり得ない。 よって、矛盾 ∴.tan A は整数にはならない。 ……………(終) 理法→P36

解決済み 回答数: 1
数学 高校生

(1)の解答に書いてある②と③のp^2と1は逆(c+b=1 c-b=p^2)もありえるくないですか? なぜ1つしか書かれていないのですか?

実力アップ問題 138 難易度 CHECK 1 CHECK 2 CHECK3 直角三角形 ABCは,∠Cが直角で、 各辺の長さは整数であるとする。 辺 BC の長さが3以上の素数』であるとき,以下の問いに答えよ。 (1) 辺 AB, CA の長さをを用いて表せ。 (2) tan ∠A は整数にならないことを示せ。 (千葉大) ヒント! (1) AB = c, CA = b とおくと, 三平方の定理から,c2=P2+b2 となることを利用する。 (2) は,背理法を用いて証明しよう。 (1)BC=p (3以上 の素数) ここで, tan ∠A=m (整数) と 2p 仮定すると, =m より, 2 ここで,AB=c, CA = b とおくと, B P p′-1 2p=m(p+1)(p-1... ④ p の倍数 4 以上 2以上 三平方の定理より, 3以上の素数 となる。 ④の左辺はp の倍数より, c2 = p'+b2 これを変形して, c2-b2=p2(c, b:自然数) (c+b)(c-b)=p^ ...... ① ここで,c+b>c-bであり,c+b とc-bは正の整数より, ① から c+b=p2.② となる。 ③ ④の右辺もの倍数となる。 しか い p+1とp-1はp の倍数では ないので,mがp の倍数となる。 よって,m≧p …⑤ m=k.p(k:正の整数)より, m≧p となるんだね。 c-b=1 ② + ③ より c=p2+1 また, pは3以上の素数なので, ......(答) 2 2 2-3 b = -P2-1 p+1≧4 {n+1 P-1≧2 ・⑥ となる。 ………..(答) 2 2 以上 ⑤ ⑥ h ④の辺は

解決済み 回答数: 1
数学 高校生

解答の右側のユークリッドの互除法のところで、なぜ最初の式に406が入るのですか? 教えてください。

実力アップ問題 137 難易度 CHECK 1 CHECK2 和が406 で,最小公倍数が2660 である2つの正の整数a,b (a <b)を CHECK 3 求めよ。 (弘前大 ヒント! aとbの最大公約数を g,最小公倍数をL とおくと,a=a'g, b=b'g, L=a'b'g (a'とは互いに素)が成り立つ。ここで,ポイントは、 aとbが互いに素ならば,a' + b'と'b'も互いに素となることなんだね 頑張ろう! ga. 2つの正の整数a,b の最大公約数をg, と等しい。よって,これをユークリッ ドの互除法により求めると, 最小公倍数をL とおくと, なんで和が 2660=406×6+224 mw …① L=a'b'g はいるの? La=a'g |b=b'g が成り立つ。よって①,②より [ a+b= (a'+ b')g = 406 … |L=a'b'g=2660 406 = 224 × 1 + 182 www 224 = 182 × 1 + 42 www 182= 42 × 4 + 14 42 = 14×3 + 0 より, ただし,α′ と b'は互いに素な正の整 数より,a' + b'a'b' も互いに素で ある。 最大公約数g 最大公約数 g = 14 となるので ③ ④ の両辺を g で割ると, もし,a' + b' と 'b' が、 1以外の素数 pを公約数としてもつものとすると, a'+ b'=29 (10+19) a'b'=190 ...3' (= 10×19) ......' Ja+b=mp a'b' = np となり, 実力アップ問題136で示した通り, a と6' は,p を公約数にもつので、矛盾 する。 また, a' + b' と a'b' が1以外の合成数 (たとえば、pg やなど...)をもっ したとしても同様に矛盾が導ける。 よって、③、④より, aとbの最大公 数g は, 2660 と 406 の最大公約数 ここで, a<bより,α′ <b' よって,③', ④' より α' = 10,6′=19 以上を① に代入して、求める a, b の 値は次のようになる。 a=10×14=140 b=19×14=266 ・・(答)

解決済み 回答数: 1
数学 高校生

赤丸で印をつけた(3)について… 微分したこたえを4でくくっても○ですか⁇

320 基本 例題 199 導関数の計算 (2) 展開してから微分 次の関数を微分せよ。宅 (1) y=(x+1)(x-3) (2)y=(2x+1)3 (3) y=(x²-2x+3) (4) y= (4x-3) (2x+3) (k, 指針 積や累乗の形のものは、 展開してから,公式を使って微分すればよい。 (x)=xn は正の整数), {kf(x)+1g(x)}'=kf'(x)+1g'(x) 別解のように, 次ページで紹介する, 次の公式①、②を利用してもよい。 ① {f(x)g(x)}=f(x)g(x)+f(x)g' (x) (積の導関数の公式) ② {(ax+b)"}'=n(ax+b)"' (ax+b)' 一般に ({f(x)}")'=n{f(x)}"'f'(x) (1) y=x'+x2-3x-3 nは自然数 は定数 解答 よって y'=3x2+2x-3・1=3x2+2x-3 (2) y=(2x)+3(2x)・1+3・2x・12+1=8x3+12x2+6x+1 よって y'=8・3x2+12・2x+6・1=24x2+24x+6 (+) (3) y=(x2)2+(-2x)+32+2・x2・(-2x)+2・(-2x)・3+2・3・x2 =x4-4x3+10x²-12x+9 よって よって y′=4x3-4・3x2+10・2x-12・1=4x-12x2+20x-12_ (4) y=(16x²-24x+9)(2x+3)=32x³-54x+274(x²-22+20) y'=32・3x2-54・1=96x2-54 別解 (1) y'=(x+1)(x-3)+(x+1)(x-3)=1(x2-3)+(x+1) ・2x =3x²+2x-3= mil (2) y'=3(2x+1)3-1(2x+1)=3(2x+1)^2=6(2x+1) (3)y'=2(x²-2x+3)2-1(x²-2x+3)=2(x²-2x+3) ・(2x-2) =4(x-1)(x²-2x+3) (4) y'={(4x-3)^^(2x+3)+(4x-3)^(2x+3)、 ={2(4x-3)^(4x-3)^}(2x+3)+(4x-3)^ ・2 まず、積の導関数。 ={2(4x-3)・4}(2x+3)+2(4x-3)²=2(4x-3){4(2x+3)+(4x-3)} =2(4x-3)(12x+9)=6(4x-3)(4x+3) 参考 別解の(2)~(4)の結果は,展開すると上の解答と同じになる。 ■ 公式 ① {f(x)g(x)}'=f'(x)g(x)+f(x)g'(x), ②{(ax+b)"}'=n(ax+b)"-1 (2x+ 式を展開せずに計算でき

解決済み 回答数: 1