学年

教科

質問の種類

数学 高校生

群数列 (2)どのように計算したら分子が39になるのか教えてください。

386 重要 例題 24 数列 群数列の応用 3 5 1 3 2'2'3'3'3'4'4'4'4'5' , 1 1 3 第1群 1個 (1) は第何項か。 (3) この数列の初項から第800頃までの和を求めよ。 (3) は,まず第n群のn個の分数の和を求める , 解答 11 31 3 51 3 5 71 12'23 3'34'4'4'45' のように群に分ける。 (1) は第8群の3番目の項である。 8 CHART & SOLUTION ** 群数列の応用 ① 数列の規則性を見つけ, 区切りを入れる ② 第群の最初の項や項数に注目 分母が変わるところで区切りを入れて群数列として考える。 (1), (2)は,まず第何群に含ま れるかを考える。 (2) では, 第800項が第n群に含まれるとして次のように不等式を立てる。 ½ k + 3 = 1/1/2 -・7・8+3=31 であるから k=1 群 第2群 第3群 個数 2個 3個 →第(n-1) 群の末頃までの項数 <800≦第n群の末頃までの項数 39 800-k=800- 11/139 2 k=1 5 |第(n-1) 群 (n-1) 個 39 (2) この数列の第 800 項を求めよ。 ゆえに, 求める和は k+ 1 7 (3)第n群のn個の分数の和は②2k-1) - 1/1/2 ■20401 第31項 3 5 + + ·+· k=1 40 40 40 1 1 (1 第1群 n 1 Joglopig s 1 006 n-l (2)第800項が第n群に含まれるとすると Σk <800 群までの項数は k=1 39 40 11 2k k=l よって (n-1)n<1600≦n(n+1) 39・40 <1600 ≦40・41 から, これを満たす自然数nはn=401600402から判断。 の不等式を解くので ・39・4020 であるから はなく見当をつける。 ←①でn=40, m=20 について • n² = n 00000 ·+· k=1 39 40 BELOOD ・第800項はここに含まれる 基本 23 第n群の番目の項は 2m-1 ① n ←①でn=8,2m-1=5 200 A=1 kは第7群までの項数 - Σ (2k-1) k=1 =2•½n(n+1)=n=n² 1から始まるn個の奇

回答募集中 回答数: 0