学年

教科

質問の種類

数学 高校生

⑶において なぜm→+0のときt→+0となるのですか

EX 342 のすべてにそれぞれ1点で接する円の半径をbとする。 ただし, baとする。 xy 平面の第1象限内において, 直線l: y=mx(m>0) とx軸の両方に接している半径αの をCとし,円Cの中心を通る直線y=tx(t>0) を考える。 また, 直線lとx軸,および, (1) tをm を用いて表せ。 (2)を用いて表せ。 (3) 極限値 lim 1 b a m+om -1 を求めよ。 [東北大 ] YA ←直線 y=tx は,直 (1) 直線 y=tx と x 軸の正の向きが なす角を0とすると, 直線lとx軸 の正の向きがなす角は20である。 軸の正の向きとの なす角の二等分線である a → x 0 a y=tx 2 tan よって m=tan20= 1-tan 20 10-00- 2t ゆえに m=. ① 1-12 よって mt2+2t-m=0 -1±√1+m² ゆえに t= m -1+√1+m² t0, m>0であるから t= m ←2倍角の公式。 =00 ←tan0=t 500g ←tの2次方程式とみて 解の公式を利用。 (2) 半径が6である円をDとする。 Dの中心からx軸に下ろし (1) の図の黒く塗った直 た垂線にCの中心から垂線を下ろすと, sin0 について 角三角形 b-a a+b √2+1 b 1 t b-a = すなわち = a+b √t²+1 b 8209-1+ a b a -=Aとおくと A-1_ t 1+A 分母を払い, 変形すると √2+1-t>0であるから √2+1 (√2+1-t)A=√t2+1+t √ t²+1+t _ (√ t²+1+t)² = √√1²+1-t (√1²+1)²-12 A= したがって tan0=tから得られる直 角三角形 +2+1 =(√1²+1++)² ←分母の有理化。 1/2=(√+1 +t) ② a ...... (3) ①,② および,m→ +0 のとき t→ +0 であることから 1/6 iimo (22-1)=im 1-12 (21°+21F+1) m→+0m a t+0 2t =lim(1-t)(t+√t°+1)=1 t→+0 ←(√2+I+t) =2t2+1+2t√2+1, 2t で約分。

未解決 回答数: 1
数学 高校生

(2)の問題で、なぜ判別式がD/4になるのかわかりませんでした。その後の式の意味も理解できていないので、教えてもらえると嬉しいです。

例題 思考プロセス 題 85 2次方程式の実数解の個数 kを定数とするとき, 次の2次方程式の実数解の個数を調べよ。 (1)x2-3x+k-2=0 場合に分ける ★☆ (2)x2+2kx+k-2k+4=0 2次方程式の実数解の個数は判別式 D の符号によって決まる。 (ア) D0 異なる2つの実数解をもつ。 (イ) D = 0 ⇔ ただ1つの実数解 (重解)をもつ。 (ウ) D<0 ⇔ 実数解をもたない。 かどうかで noibA Action» 2次方程式の実数解の個数は, 判別式の符号を調べよ 解 (1) 与えられた2次方程式の判別式をDとすると D=(-3)2-4・1・(k-2)=-4k +17 17 4のとき2個入 (ア)D=-4k+17>0 すなわちくのとき 2個 17 (イ) D=-4k+17=0 すなわち k= =1のとき 1個 17 4 (ウ) D=-4k+17 < 0 すなわちん > > のとき 0 個 moito になる 定数項k-2は()を付 けて1つのものと考えて 計算する。 不等号の向きに注意する。 -4k+17> 0 -S) = -4k> -17 (2)与えられた2次方程式の判別式をDとすると2次方程式 D (ア) 24 D (イ) 4 D 4 = =k-1· (k-2k+4)=2k-4 =2k-40 すなわちん > 2 のとき 2個 =2k-4=0 すなわちん = 2 のとき 1個 これらは、 (ウ) // =2k-40 すなわちん <2のとき0個 ては 17 4 (S) +26′x+c=0 におい D =672-ac 44000 を用いてもよい。 Point .+1)

解決済み 回答数: 1
数学 高校生

(3)で、なぜa=2の場合分けが必要なのかわかりませんでした。また、両辺をa(a-2)で割って、という説明の意味がわからなかったので、教えてもらえると嬉しいです。

★☆☆☆ 例題83 文字係数の方程式の★★★☆ 次のxについての方程式を解け。 (I) (1)x+(a-2)x-2a=0 (2) ax²-2x-a=0(3)dx-2ax+a=0 (2)(3)問題文では,単に 「方程式」 となっており、2次, 1次方程式とは限らない。 場合に分ける 思考プロセス (x2の係数) = 0 のとき 1次方程式を解く (2) (x2の係数) ≠0のとき 2次方程式を解く (例題 82参照) 。 いる。 -2 3 1 Action » 最高次の係数が文字のときは、0かどうかで場合分けせよ (1)x2+(a-2)x-2a=0より 例題 よって 10 x=2, -a (2) (ア) α = 0 のとき,この方程式は The これを解くと x=0 (イ) α = 0 のとき, 解の公式により (x-2)(x+a)=0x2+(a+B)x+αB = 0 exe -2x = 0 __(−1)±√(−1)-α(-a) 1±√α° + 1 x= a == +1>0より, これは解として適する。 a 最小公 て,各 fa = 0 のとき x=0 。 解) から、 SB (ア)(イ)より 1 ±√2+1 a = 0 のとき x= (3) ax-2ax+α = 0 より a(a-2)x=-a あるか - ac のとき (x+α)(x+β)=0 a = 0 のとき,与えられ た方程式は1次方程式と なる。 2次方程式 ax2+26′x+c=0 の解は x= 6' ±√b2-ac (ア) α = 0 のとき,この方程式は 0.x = 0 よって、 すべてのxで成り立つから, 解はすべての実数。 (イ) α = 2 のとき,この方程式は 0.x = -2 a = 0 の可能性があるか ら,いきなり両辺をαで 割ってはいけない。 3 章 2次関数と2次方程 この式は成り立たないから,解はない。 (S) 照。 (ウ) α = 0, 2 のとき x=- 1 a-2 1 2-a Mod Job a(a-2) ≠0 より 両辺 をα(a-2) で割って a = 0 のとき (ア)~(ウ)より |a=2のとき すべての実数 解なし 09- a x= a(a-2) な 1)= 1 1 a-2 2-a a = 0, 2 のとき x= 2-a Point...文字係数で場合分けする方程式の解法 方程式の最高次の係数が文字のときは,その値が0かどうかで場合分けする。 最高次の係数が0のとき,(3)のように,解がすべての実数となる場合(不定)や、解な しとなる場合(不能)もあることに注意する。 練習 83 次のxについての方程式を解け。 C (1)x2+(3-4)x-3α = 0 ■ (2) ax2+x-a=0 (3) a²x-2=2ax-a

解決済み 回答数: 1
数学 高校生

常用対数についてです。 イの解説でいきなり5と6の常用対数をとっている理由が分かりません。教えてください🙏

22 306 基本 例題 191 最高位の数と一の位の数 00000 126 は 桁の整数である。 また, その最高位の数は、一の位の数 は?である。ただし,logo2=0.3010, logo3 04771 とする。 logo N の整数部分, 指針 (ア)(イ) 正の数Nの桁数は 最高位の数は 10g10 N の小数部分に注目。 [慶応大 基本188) なぜなら,Nの桁数をkとし,最高位の数をα (a は整数, 1≦a≦9) とすると ・10k 1≦N<(a+1)・10k-1 ← a000(0がk-1個) から α999 (9がk-1個)まで。 - 各辺の常用対数をとる。 ⇔k-1+10g0a≦log10N <k-1+10g10(a+1) 10g10 (α・10-1)=10g0a+10g 10 ⇔10gio (a・10k-1)≦10g10N<10g10((a+1)・10k-1} よって, 100g10 N の整数部分をp 小数部分をg とすると (ウ) 12',122,12, p=k-1, logi0a≦g <log10(a+1) を計算してみて、一の位の数の規則性を見つける。 (ア) 10g10126=601ogio (223)=60(210g102+10g103) 解答 【10g10126=6010g10 12, =60(2×0.3010+0.4771)=64.746 12=22.3 ゆえに 64<log10 1260<65 (aе.0 (ae.o sas80 よって 1064 <126 <1065 したがって, 126 は 65 桁の整数である。 (イ)(ア)から 19 log1012=64+0.746 ae 100g (イ)の別解 (ア) から 1260=1064.746=1064100.746 ここで 10g105=1-10g102 =1-0.3010=0.6990 180 gol 401 1000 =0.3010+0.4771=0.7781 10gto6=10g102+log10 3 log105 <0.746 <10g106 5<100.7466 Segol ゆえに すなわち よって 5・10641064.7466・1064 すなわち 5.1064<1260<6.1064 したがって, 12% の最高位の数は 5 010.0 (ウ) 12′,122,123,124,125, の一の位の数は、順に 2, 4, 8, 6, 2, ...... となり、4つの数2,4,8,6 を順に繰り返す。 60=4×15であるから, 12% の一の位の数は 10°/10°.746 <10'であるか ら, 100746 の整数部分が 12 の最高位の数である。 ここで, log105=0.6990 から 100.6990=5 10g10 6 = 0.7781 から 100.7781=6 100.6990 5100.746 <100.7781 から 5<100.7466 よって、最高位の数は5 122 (mod10) である 6 から12"の一の位の数 は, 2” の一の位の数と同

解決済み 回答数: 1
1/652