学年

教科

質問の種類

数学 高校生

Focus Gold 数学II 例題98 写真の赤線部はなぜ成り立つのですか?

例題 98 円外の点から引いた接線(2) 2円の方程式 ***** x+y=5に点 (31) から接線を2本引く。そのときの2つの接点 P,Q とするとき,直線PQ の方程式を求めよ。 [考え方 接点の座標をP(x, yì), Q(x2,y2) とおいて求める 解答 接点をP(x1,yi), Q(x2,y2)とすると、 点Pにおける接線は, xx+y=5 3x+y=5Q...① 3x2+y2=5... ② これが点 (31) を通るから, 点Qにおいても同様にして ①②より、点P. Qは直線 3x+y=5 上の点である 2点PQ を通る直線は1本に決まるので、直線 PQ の方程式は, 3x+y=5 (別解) 点R(3,1) とする. △OPR と △OQR は合同な三角形 だから、対称性より, OR⊥PQ 円x+y=r上の 点(x1, yi) における 接線の方程式 xx+y=r YA R(3, 1) √5- P P (3. 0 x x 1Q これより直線PQの傾きは3で あるから kを実数として, 直線 PQ は,y=-3x+kとおける 0 1QS 原点と直線 PQ の距離 dは, d= |-k| k √32+12 10 ここで 直線 OR と直線 PQ の交点をSとすると, (直線ORの傾き) (直線PQの傾き) 図より, k0 △OPR∽△OSP であり, OR=√10 OP√5OS= k ∠POR = ∠SOP, √10 ∠OPR = ∠OSP だから5:10:5 k=5 10 OP: OS=OR: 0 よって、 直線 PQ の方程式は、 y=-3x+5 Focus 円外の点(x,y) から円x+y=r" に引いた接線の 2 接点を通る直線は, xox+yoy=r.2 (極線) 注 <証明> 接点を (x1,y1)(x2,y2) とすると, 接線はxx+yy=rx2x+yzy=r YA (xo, yo) (x, y) となりともに点(x,y) を通るから, xix+yiyo=r2, x2x+yayo=r2 (*) O X2Y2 ここで, 直線 Xox +yoy=r を考えると、 (*)より(x,y) (x2,y2) はこの直線上の点である。 よって, 求める直線は, xox +yoy=r(証明終) 同様に考えて、円外の点(x0,yo)から円(xa)(y-b)=rに引いた接線 の2接点を通る直線の方程式は, (xa)(x-a)+(yo-b)(y-b)=r 練習x+y=10 に点(5, 5) から接線を2本引く。 そのときの2つの接点を結 98 直線の方程式を求めよ。 ***

解決済み 回答数: 1
数学 高校生

Focus gold 例題89 なぜこの解き方が間違っているのかがわかりません

4 第3章 図形と方程式 Think 立 **** 例題 89 弦の長さ(1) 直線 y=2x+2...... ① が円 x + y' =8...... ② によって切り取られて 解答 円 ②の中心 (0,0) と直線①の距離は, |2| |2| 2 できる弦の長さを求めよ. 考え方 図に描いて考える 円の中心と弦の距離を求めて、三平方の定理を利用する y=2x+2 より 2x-y+2=0 =- √2+(-1)^√55 2√2 2√2 求める弦の長さを2ℓ とすると,円の 2√2 2ℓ とおくのがポイ ント 半径が22より X e+(1/5)=(2/2) 36 e2. 5 6√5 I+ l>0より, l=- 5 12/5 よって、弦の長さ2ℓ は, 5 (別解) ①を②に代入して, x2+(2x+2)2=8 (B, 2B+2) 5x2+8x-4=0 .....③ また,円 ②と直線 ①の交点の座 標を(α, 2α+2) (22) とす x ると,α βは2次方程式 ③ (a,2a+2) の2つの解だから,解と係数の関係より、 8=2√√2 ) 2 三平方の定理 求める長さは2ℓで あることを忘れずに 解と係数の関係を利 使用する解法 2.85% ax2+bx+c=0 の 2つの解をα βと 8 +B=- aß= 求める弦の長さを l とすると, l°=(β-a)'+{(2β+2)-(2x+2)}=5(β-α) 2 =5{(x+B-4aB)=5{(-2)-4(-1)}=141 すると b a+β=- aß= a a 三平方の定理 よって, l>0より,弦の長さは, 12/5 5+(1-8) Focus 弦の長さの問題は,円の中心から弦に垂線を引き、 三平方の定理を利用する l²+d²=r² >m> Think

解決済み 回答数: 1
数学 高校生

赤い線が引いてあるところで、xで割るのにx=0の時と0でない時で場合分けしていないのはなぜですか?教えてください!

例題 221 定積分と すべての実数xについて, 等式 xf(x)=x+2 f(x) を求めよ。 思考プロセス « Re Action 上端 (下端)が変数の定積分は, 定理の利用 y=f(x) とおくと ★★☆☆ +2 ff(t) dt を満たす関数 af*f(t)dt=f(x) を利用せよ 1910 Go Ah 微分方程 でその現 探究 例題 薬を血 さで代 をxで微分する + xf'(x) =1+2f(x)⇒y+xy'=1+2y f(x) し、 微分方程式 にx=1 を代入 1・f(1)=1+2ff(t)dt 0 () iA 解 xf(x) = x+2 2* ƒ (t)dt ... ..① とおく。 163 よって, ②より 両辺を積分すると=fa ①の両辺をxで微分するとf(x)+xf'(x) =1+2f(x) dy y = f(x) とおくと x =y+1 dx ... ② 関数 f(x) はすべてのxについて定義されており, 定数関数 f(x) = -1 は等式① を満たさないから, x(y+1) ≠0 としてよい。 1 dy 1 y+1dx x 両辺をxで微分して微分 方程式をつくる。 dx f* f (t)dt = f(x) リ Ac 関数 f(x) = -1 のと (笑)き、①の左辺は x 右辺は 2∫(-1)dt 脚生 (1) 思考プロセス (1) If (2) はっ 血中 [条 条件 x+2 log|y+1| = log|x|+Ci =x-2(x-1) =-x+2 これより |y+1| = elog|x|+C1 = eCielog|x| = となり, f(x)=-1 は ① を満たさない。 よって y=±ex-1 C ここで,C=±e とおくと y=Cx-1(C≠0)ol 例題 1=C・1-1 より C = 2 したがって,求める関数 f(x) は f(x) =2x-1 Point... 微分方程式と初期条件 B4 また, ① に x = 1 を代入すると f(1) =1であるから, らf(1)=1 ff(t)dt = 0 であるか t (2) t 微分方程式の一般解は, 任意定数を含む 曲線群を表すが、これらの曲線のうち 点(x1, 21) を通るもの、すなわち x= x1 のとき y = yı 3) という条件を満たす特殊解は,いくつかに限定される。 微分方程式に対するこのような 条件を初期条件という。 ■ 221 すべての実数xについて L チャレンジ (7)

解決済み 回答数: 1
数学 高校生

この問題についてで、解答と最初の計算は合っているのですが、途中から違ったように計算していて、写真の式の最後のところで、log0になってしまったのですが、変形が間違っているということですか?それともこれでは計算出来ないから違う方法で計算しなければいけないということですか?回答... 続きを読む

思考プロセス 例題] どの箱に入る確率も等しいとする。 どの箱にも1個以下の球しか入ってい 個の球を2個の箱へ投げ入れる。各所はいずれかの箱に入るものとし log n ない確率を pm とする。 このとき, 極限値 lim n→∞ n を求めよ。(京都大改) « ReAction 確率の計算では、同じ硬貨・ さいころ 球でもすべて区別して考えよ 例題214 段階的に考える まずを求める Dn = n個の球は区別して考える。 (__となる場合の (異なるn個の球が2n個の箱に入る場合の数) = ( 積や指数を含む式) 区別したn個の球を 2n個の箱からn個の箱 を選んで入れる入れ方 9A « Re Action n項の積の極限値は、対数をとって区分求積法を利用せよ 例題 172 33 x b (x) t n個の球が2n個の箱に入る場合の数は (2)" 通り どの箱にも1個以下の球しか入らないようなn個の球の入 り方は 2P通り 球は区別して考える。 2n個の箱から,球を入れ n個の箱を選び、どの が入るか考える。 球は区別して考えるから 気 よって 2nPn kn === (2n)" を使う時 ゆえに (2m) A のいつけないと(0) 2n log pn C ではなく 2P であ る。 lim lim n→∞ n 2mPm 間違う。 n -log- non (2n)" (2n) (2n-1)(2n-2). lim non lim -log 2n log + log 1/{10 n→∞n 2n ... (2n) n {2n-(n-1)} 2n-2 2n-1 + log 2n 2n ・+log. 2n-(n-1) 2n nie lim 1n-1 n→∞nk=0 = = lim non log 2n-k 2n log 2 n k=0 )= log(1-x)dx =[-2{(1-1/2x)100(1-1/2)-(1-1/2x)} = 10g2-1 ■1741からnまでの粘 = logxdx Slogx =xlog.x-x+c -log- 1

解決済み 回答数: 1
1/260