学年

教科

質問の種類

数学 高校生

相加・相乗平均を使って範囲を調べるのはなんでですか?範囲を求める問題って沢山あると思うんですけど、どうしたら範囲を調べるっていう発想になりますか。

関数 y=4x+1-2x+2+2 (x≦2) の最大値と最小値を求めよ。 00000 / 関数y=6 (2x+2-x)-2(4*+4¯*) について, 2*+2=t とおくとき,yをt を用いて表せ。また,yの最大値を求めよ。 指針 (1)おき換えを利用。2*=t とおくと,yはtの2次式になるから 2次式は基本形α(tp)+αに直すで解決! なお、変数のおき換えは,そのとりうる値の範囲に要注意。 (2)まず,X2+Y2=(X+Y) -2XY を利用して, 4+4 を表す。 ・基本 173 で表すとの2次式になる。なお,t=2*+2* の範囲を調べるには, 20, 2-x>0 に対し, 積 2*2=1 (一定) であるから,(相加平均) ≧ (相乗平均)が利用で きる。 (1) 2^=t とおくと t>0x≦2 であるから 0<t≦2|pg⇔2°≦2° 解答 したがって <t≦4 y を tの式で表すと (1) ① ケ y=4(2")"-4•2"+2=4f-4t+2=4(t-12) 2+1 ①の範囲において, y は t=4で最大, t=1/2で最小とな gol y 50 最大 る。 t=4のとき 2=4 ゆえに x=2 のとき 2x= 1 10 2 10of ゆえに [豆] (1/2) 4 よってx=2のとき最大値50, x=-1のとき最小値1 (2)4*+4=(2x)+(2-x)=(2' +2'*)'-2・2・2x=-2 2F•2-1=2°=1 ゆえに y=6t-2(t2-2)=-2t2+6t+4 ...... 20, 2x 0 であるから,(相加平均) ≧ (相乗平均)よ 相加平均と相乗平均の関係 り(*)2+2222×2 すなわち t≧2…② a>0, 6>0のとき a+b √√ab 2 成り立つ。 ここで,等号は 2*=2x すな わちxxからx=0のときで -lo こ YA m17 最大 2 8 り立つ。) (等号はa=bのとき成 ①から y=-2(1-2/21)2+1/27 4 ② の範囲において,yはt=2 のとき最大値8 をとる。 x=0のとき最大値 8 32 3 2 t t=2となるのは, (*)で 等号が成り立つときであ る。 ( 5 5章 29 2 指数関数

未解決 回答数: 2
数学 高校生

数Bの統計的な推測の仮説検定です。四角の部分がなぜ、正規分布表から、この数が出てくるのか分からないので解説お願いしたいです!

94 第2章 統計的な推測 10 5 9 仮説検定 数学Ⅰで学習した仮説検定について, 正規分布を利用する方法を学ぼう。 A 仮説検定 ある1枚のコインを100回投げたところ, 表が61 回出た。 この結果 から 「このコインは表と裏の出やすさに偏りがある」 と判断してよい ろうか。 すると, 表が出る確率と裏が出る確率は等しくないから,次の [1] がい コインの表が出る確率をとする。 表と裏の出やすさに偏りがあると える。 ここで,[1] の主張に反する次の仮定を立てよう。 [1] p=0.5 [2] p=0.5 「表と裏が出る確率は等しい」と仮定 出本 001 [2]の仮定のもとでは, 1枚のコインを100回投げて表が出る回数x は,二項分布 B(100,0.5) に従う確率変数になる。 2 期間に含ま たのだから。 覚えるとの主張 ると判断してよさ 2 一般に、母集団に関して 果によって、この仮説 検定という。また、 するという。 前ペー が棄却されたこ 仮説検定では、前ペー こると仮説を棄却 基準となる確率αを たは 0.01 (1%)と定め 有意水準αに対して B 15 Xの期待値mと標準偏差のは ような確率変数の値 m=100×0.5=50, o=√100×0.5×0.5 = 5 78 ページ参照 範囲を有意水準α であるから, Z= X-50 5 は近似的に標準正規分布 N(0, 1) に従う。 ページの例では、 ① 正規分布表から y P (-1.96 ≦ Z≦1.96) = 0.95 である。 確率変 ければ、「仮説を乗 0.95 120 である。このことは, [2] の仮定のもとで 0.025 きない場合、その 0.025 Z-1.96 または 1.96 ≦ Z ① という事象は,確率0.05 でしか起こらない 22 1.96-01.96- ことを示している。

未解決 回答数: 1
1/1000