学年

教科

質問の種類

地学 高校生

地学基礎の地球の形と構造です。問15の解説の35°65'がどこから出てきたのか分かりません。教えてください至急お願いします🚨

A 6 (km) 地球の形は,実際には山や谷, 海嶺や海溝もあり、 完全な球体でもなければ回転楕円体 でもない。ここで, 地球の最高峰の高さが1万m, 海の最深部の深さが1万mであると する。 地球の赤道半径を5cm とすると,この高さの差2万mは何cmとなるか。 次の(ア) 〜(ケ)から選べ。 (ア) 0.15cm (イ) 0.16cm (ウ) 0.17cm (エ) 0.015cm (オ) 0.016cm (カ) 0.017cm (キ) 0.0015cm (ク) 0.0016cm (ケ) 0.0017cm (2013 桜美林大改) 指針 解説 (1) 面積の割 応している。陸地の標 さえておこう。 (2)陸地の平均標高が約840mである。 画面の位置はbであることがわかる。 面積に占める割合の小さい範囲で水深が している。 Bは海洋地域の最も水深の深い部 ・B 5 10 15 20 表面積に占める割合 [%] (オ) 海岸段丘 す図として正しいものを しだ距離が近いのは, 北極 方向と短軸方向の半径の 15 地球の大きさ 千葉市とつくば市は同じ経線上にあるとして, 千葉市の緯度を北緯 35°38′ つくば市の緯度を北緯 36° 5′ とすると, 千葉市とつくば市の地表面に沿った距 離は何km か。 小数第1位を四捨五入して答えよ。 ただし, 地球は半径6400km の完全な 球形として計算してよい。 なお, 1° (度)=60' (分)であるとし, 円周率は3.14 とする。 (2015 千葉大) 16 地球の内部構造 地殻, マントル, 核の体積比を表すグラフとして最も適当なものを, 次の (ア)~(エ)から選べ。 (ア) 地殻 (イ) 地殻 核 (ウ) (エ) 地殻 地殻 核 北緯45 北極 赤道 45° 核 核 マントル マントル マントル マントル 緯度差 でいるため、 緯度 赤 大 17 地球の内部構造 地球の平均密度は,地球全体の質量 (6.0×102g) と体積 (1.1× 10cm²)から求めることができる。 地殻とマントルを合わせた部分の体積を9.2×10cm3 平均密度を4.5g/cm とすると,核の平均密度は何g/cm か。 小数第1位を四捨五入して 答えよ。 (2015 センター) で す

解決済み 回答数: 1
地学 高校生

地学基礎 12(5)で質問です 核の密度を求めています。問題は写真1枚目で、(4)でD,d,R,rが何なのかが書かれています。 数字は分かっているので代入していったのですが、解説(写真2枚目)赤線のように分母と分子に10の5乗がかけられていました。 自分でやったら写真3枚目... 続きを読む

一 編 は高度 41 して,次の問いに答えよ。 ただし, 計算せよ。 (1)地球の円周は何kmか。 有効数字2桁で求めよ。 (2)2地点X,Yにおける北極星の高度は,それぞれの地 点の何と等しいか。 (3)地球の円周を1とおき, 地点 X,Yの間の距離をd, 地点X,Yの緯度の差を0(度) としたとき,どのよう な関係式ができるか。 X Y 北極 赤道面 (4) 地点 X, Yの間の距離は何kmとなるか。 有効数字2 桁で求めよ。 南極 例題 1,2 計算 12 地球内部の構造 次の問いに答えよ。 地球はおおよその半径6.4 × 10°km, 平均密度 5.5g/cmの球体であるが,実際の地球 の内部は成層的な密度構造をもっている。地球内部の表層は平均密度 2.7g/cm の ア があり,その厚さは地球半径に比べて非常に小さいため無視できるとみなす。 よって,地球はおおよその厚さ 2.9 × 10km, 平均密度 4.5g/cmのイとその内側 にある核の2つから成りたっていると考えると, (a 核の密度を求めることができる。 (1) モホロビチッチ不連続面直下の密度を,次の①~④の中から選べ。 ①2.3g/cm ②2.7g/cm ③ 3.3g/cm3 ④4.0g/cm (2) 文中の ア とに適切な語を入れよ。 (3)地球内部の構成物質を岩石と金属に区分すると、 その境界の深度は何kmであるか。 (4) 下線部(a)に関連して,地球の平均密度をD, マントルの平均密度をd, 地球の半径を R, 核の半径をr とすると, 地球の質量はD× R3 と表せる。 マントルの体積と 核の密度はどのように表せるか。 (5) 核の密度は何 g/cm か, 有効数字2桁で求めよ。 3 ただし,2.9' = 24, 3.5° = 43, 6.4° = 260のうち必要なものを用いよ。 [ 名古屋大 改 〕

解決済み 回答数: 1
地学 高校生

地学基礎です 例題2は①-②をするとマントルの体積が出るのでマントルの体積÷地球の体積(①)×100をすると割合が出てくるかなと考えたのですが合っていますか?あと、①と②の数が大きいせいか、うまく計算ができないので解き方教えてください🙇 例題3は(1)と(2)は多分できまし... 続きを読む

【例題2】 地球において地殻の厚さが無視できるほど薄いとしたとき、 マントルの体積が地球全体の体積に占める割合として最も適切なも のを、次の①~④からひとつ選び、 番号で答えなさい。 ただし地球も核も完全な球体であるとし、 地球の半径を6400km、 グー テンベルク不連続面の深さを2900km とする。 また必要に応じて、 次の値を利用してもよい。 2.92 8.4 2.9324.4 3.5212.3 3.5342.9 6.4240.9 6.43=262.1 ① 76% ② 80% ③ 84% ④ 88% ①季・6400= 640 ②チル・29003= 2900ku TC=3.14 【例題3】 地球の質量は 6.0×1024kg である。 地球を半径 6400kmの球としたとき、 次の問に答えなさい。 (1) 地球の質量は何gか。 有効数字2桁で答えなさい。 (2) 地球の半径は何cmか。 有効数字2桁で答えなさい。 (3) 地球全体の平均密度として最も適切なものを、次の① ~ ④ からひとつ選び、番号で答えなさい。 ただし 6.4 = 2.6×102、 円周率 = 3 とする。 ①5.4g/cm3 1 ② 5.8g/cm² ③ 54g/cm3 ④ 58g/cm3 (1) 1kg 1000g 6.0×1007g (2)1ku=100000 cm 6.4×1080 cu (3)

解決済み 回答数: 1
地学 高校生

地学でそれぞれのハワイ島からの距離を求めて、太平洋プレートがどのように動いているのか答える問題なのですが分かりません💦

**6 <ホットスポット> 北太平洋では、図1に示 すように、ハワイ諸島から アリューシャン列島付近ま で海山および火山島が列を つくって並んでいる。 これ らは、マントルに固定され た点状の熱源 (ホットス ポット) の上を太平洋プ レートが動いていくことに よってつくられたと考えら れている。 140°E 160° 180° 160° 140° 120°W 問2 ¥70 だ 明治海山 (7000万年前) N か 50° アリューシャン列島 60° ち 50° N ① 140 推古海山 (5960万年前) ハワイ諸 30° -20° 問3 -仁徳海山 40° ( 5620万年前) と 雄略海山 (4340万年前) 2 30° ハワイ諸島 ミッドウェー島 ハワイ島 の (2770万年前) (40万年前) 0 ネッカー島 20° (1030万年前) 問4 160°E 170° 180° 170° 160° 150°W 図1 図中の網かけの部分は水深2000mより浅い海域で 白抜きの丸は主な火山島を、黒丸は主な海山の位置を示 す。また()内の数字はそれらの形成年代を表す。 問1 縦軸に海山および火山島の形成 年代を、横軸に基点の火山島 (ハワ イ島)からの海山列に沿った距離を とり 図2のようなグラフを作成し た。グラフから読み取れるこの 7000万年間の太平洋プレートの動 きとして最も適当なものを,下の① ~④のうちから一つ選べ。 ① 太平洋プレートは, およそ一定 の速度で移動している 〔万年前〕 8000 海山および火山島の形成年代 明治山 6000 推古海山 仁徳海山 雄略海山 ミッドウェー島 4000 2000 ネッカー島 ② 太平洋プレートの移動速度は、 増加し続けている。 0 2000 4000 6000 (km) ハワイ島からの距離 以上静止していた時期がある。 ② 太平洋プレートは, 2000万年 図2 ④ 太平洋プレートの移動速度は、減少し続けている。

解決済み 回答数: 1
地学 高校生

(2)の問題で毎回計算ミスをしてしまうんですけど、簡単に計算できる方法などあったりしますか?

重要問題 1 地球の大きさ 地球の大きさに関する次の文を読み, 後の問いに答えよ。 紀元前230年ごろ、エラトステネスが初めて地球の大 きさを計算した。 計算には,夏至の日の太陽の南中高度 がエジプトのシエネでは90° シエネからほぼ真北に 900kmのところにあるアレクサンドリアでは 82.8°であ ることを利用し, 地球は球形であると仮定した。 ((1) アレクサンドリアとシエネの緯度差を求めよ。 アレクサンドリア 天頂 太陽光 82.8° 90° シエネ 2 文中の数値を用いて, 地球の半径を有効数字2桁で 求めよ。なお, 円周率は 3.14 とする。 ● センサー 同じ天体の南中高度の 差は緯度の差に等しい。 解説 (1)2地点の緯度差は、下の図のβである。 太陽光線 は平行なので,β = α となる。 よって, ●センサー 地球の大きさは, 弧の 長さが中心角に比例する ことを利用して求める。 センサー [有効数字の計算] 途中の計算では問題文 の指示より1桁多く計算 し、最後に四捨五入して 指示された桁にすればよ α =90° 82.8°=7.2° (2) シエネとアレクサンドリアとの 緯度差は7.2° であり、 またその 間の距離は900km である。 中心 角と円弧の長さとの比例関係か ら、地球の半径をR とすると, 900km 2×3.14×R = 7.2° : 360° 900kmx360° したがって, R=- -≒7166km 2×3.14×7.2° 有効数字2桁のため, 7.2×10km と答えればよい。シリ い。 答 (1) 7.2°(2) 7.2×10°km な るほど! 地球の大きさの計算 求めるものが円周の長さか半径か、間違えやすいのでよく注意しよう。

解決済み 回答数: 1
1/5