学年

教科

質問の種類

地学 高校生

問3の⑵がなぜ4となるのかがわかりません。助けてください😭

に 地球が球形であることは、紀元前4世紀にはすでに知られていた。アリストテレスらは自然現象の観察によ って、(ア)地球が丸い証拠をいくつか示していた。 紀元前3世紀には、エラトステネスは地球を球形と考 えて,はじめてその大きさを求めた。具体的には、ほぼ南北に位置するエジプトのアレキサンドリアとシェネ で、夏至の日の正午に観測される太陽の(A)の差と,アレキサンドリア~シエネ間の(B)から 地球の全周の長さを計算した。 17 世紀には,地球の形は完全な球ではなく,楕円を一方の軸のまわりに回転したときにできる回転楕円体で あると考えられるようになった。 そして 18世紀には、フランスの測量隊が(ウ)高緯度地方と低緯度地方で、 緯度差 1° あたりの経線の長さを測量することによって、このことを確かめた。 (エ)回転楕円体の長軸の長さを a, 短軸の長さを b として,- a-b a で表される値を(C)という。 また,地球の大きさ・形に最も近い回転楕円体を(D)という。(D )はなめらかな表面の立体である が,実際の地球の表面にはさまざまな凹凸がある。 問1 文章中の下線部(ア)について述べた次の文abの正誤の組合せとして最も適当なものを,後の1~4 のうちから一つ選び, 番号で答えよ。 a 南北に離れた2地点では,同じ日時でも見える星が異なる。 b 日食のとき, 太陽は丸く欠けていく。 生こ a 1 正 b a 正 A 正 b 誤 3 誤 a b a b 正 4 誤 誤 問2 文章中の空欄 (A)~(D)に入れる適当な語を,それぞれ答えよ。 問3 次の(1)(2)の各問いに答えよ。 (1) 文章中の下線部 (イ) に関連して, 地球を球形と仮定し, 国土地理院発行の5万分の1の地形図をもとに地球の半径を 求めることを考える。 図1のように, 5 万分の1の地形図の 上端から下端までの長さを r [cm], 上端と下端の緯度の差を [°〕 とする。 ① 地図上の上端から下端までの距離は、 実際の距離では 何kmに相当するか。 r を用いて答えなさい。 なお,5万分の1の地形図上での 1 cm は,実際の 0.5 km に相当する。 ②地球全周の長さ L [km] を, r と 0 を用いた式で表せ。 上端 T[cm] 下端 図15万分の1の地形図 0 (°) (2) 文章中の下線部 (ウ)に関連して述べた次の文章中の空欄 (E) ( F )に入れる語句の組 合せとして最も適当なものを、後の1~4のうちから一つ選び、番号で答えよ。 北海道と沖縄の5万分の1の地形図を用いて, 地球を球形と仮定し, それぞれの地形図の緯度差 0 は等 しいものとして, それぞれの地形図から地球の半径を求めた。 すると, それぞれの地形図の緯度差 0 は等し いにもかかわらず, 北海道の地形図から求めた地球の半径の方が, 沖縄の地形図から求めた地球の半径より も(E)ことがわかった。 これは,地球が極半径よりも赤道半径の方が ( F ) 回転楕円体に近い形 をしているためである。 E F 1 短い 短い 3 長い 短い 文中の下()に由 24 E F 短い 長い 長い 長い

回答募集中 回答数: 0
地学 高校生

地学基礎です!この問題の答え合わせがしたいのでここの答えを知っている方は教えてください‼︎

8 休 6 第1編 活動する地球 3.地球の形 次の文の空欄に適切な語句や式を記入せよ。 (1 地球の形は大まかに見ると(ア 方向につぶれ(" ふく と考えてよいが、より詳しく見ると 方向に膨らんだ( の形を )で, で表される。 地球がこ している。 だ円がどのくらい膨らんでいるかを表すものが ( 赤道半径を a,極半径をbとすると ( このような形をしていることは、極地方の緯度1°当たりの経線の長さが赤道 地方のそれよりも(* いことによって証明された。 4.地球の形 次の文中の空欄に適切な語句を記入せよ。 地球は自転していることから, 地球の表面 北極 には(ア )がはたらく。 このことから ニュートンは,地球の形は完全な球ではなく 1°⌒ (" 方向に膨らんだ(^ ) であると予想した。 天道 1° この考えが正しいことは, 18世紀にフラ ンス学士院の測量の結果証明された。この測 量は,赤道地方の緯度1° 当たりの経線の長 さと,中緯度地方 極地方のそれを測量したもので,その長さは,赤道地方 のほうが極地方よりも( いことがわかった。 もし, 地球が完全な球 い ならば、緯度1°当たりの経線の長さはどこでも ヒント 各地の緯度は,その地点での鉛直線と赤道面がなす角度である。 5 地球の表面の起伏次の図は,地形を1000mごとに区分したものであ る。これを参考にして,全地球表面の高度深度と面積の関係について述べ (1)~(3)の文の空欄(ア)~(ウ)に適切な語句を記入し, (4) に答えよ。 (m) 5000~ 4000~5000 陸 3000~4000 度 2000~3000 1000~2000 0~1000 0~1000 1000~2000 2000~3000 深 3000~4000 海 4000~5000 5000~6000 6000~7000 7000~ 0 5 10 15 20 25 地球の表面積に占める割合(%) (1) 高度2000mより低い陸の部分の面積は,深度 2000mより浅い海の部分 の面積より ( い。 (2) 高度1000m より高い陸の部分の面積は, 高度1000mより低い陸の部分 の面積より(^ い。 (3) 深度3000mから5000mまでの海の部分の面積は, 深度5000m より深い 海の部分の面積より(2 い。 (4) 地球全体の1000m 区分ごとの面積の中で最も大きいのは,どの区分か。

回答募集中 回答数: 0
地学 高校生

この問題わからないです。教えてください🙇‍♂️どうすればいいですか

スキル 階級区分図のつくり方 SKILL 5 しきさい 階級区分図を作成するには、まず統計データの最大値と最小値に注目して3~5段階ぐらいに区分する。 次に、階級区分に応じて明るい色から暗い色へ もしくは暖色から寒色へ濃淡や色彩を決める。 この とき、各区分の大小の順序が分かるようにパターンを主笑することが大切である。 階級区分やパターン この決め方が悪いと, 作図の意図が伝わりにくくなる。 統計地図を作成する際には、意図が伝わりやすい 図のタイトルをつけることや、 例 統計の調査年、出典, 縮尺 (スケール) を記載することなどにも留 意しよう。 [和2年 全国都道府県市区町村別面積調、ほか) 都道府県別人口密度 (2020年) ■600人/km²以上 400~600 ■ 200~400 200人/km2未満 Let's TRY 都道府県別人口密度 (2020年) ■600人/km²以上 1400~600 1200~400 1200人/km2未満 B 都道府県別人口密度 (2020年) 15000人/km²以上 4000~5000 13000~4000 |3000人/km²未満 200km 1 同じ内容を異なる色と階級で示した階級区分図 STEP 1 都道府県別人口密度を表した階級区分図として、 図1のBとCの色や 区分をどのようにすれば分かりやすくなるか, 考えよう。 Ⓡ ( © ( けいこう | STEP 2 図2の統計データをもとに, 傾向がよく表れるような階級区分図を作 成しよう。 その際, 階級区分をどのように設定したのか説明しよう。 |1000人あたりの 大学生数(人) 北青岩宮秋 形島城木馬玉葉京川 山福茨栃群崎 17.0 新 13.0 富 山 田 千 東 都道府県 北海道 森 手 10.4 石 25.1 福 tre 10.1 山 梨 20.9 岡 12.2 長 8.2 岐 13.3 静 岡 10.8 山 9.9徳 11.7 愛 知 25.5 香 15.6三 15.8 滋 18.2 京 54.9 大 神奈川 20.3 兵 重賀都阪庫 8.5 愛 24.3 高 63.9 福 27.9 佐 22.8 長 島口島川媛知岡賀崎 図 都道府県別1000人あたりの大学生数 * 都道府県 1000人あたりの 大学生数(人) 都道府県 湯 14.3 奈 11.5 和歌山 1000人あたりの 大学生数(人) 良 1 (2020年) (文部科学省資料、ほか〕 000人あたりの 都道府県 大学生数(人) 17.2 熊 9.5 大 川 28.1 鳥 14.4 島 取 13.9 宮 井 根 11.6 鹿児島 本分崎島 15.6 14.3 200km 9.9 10.6 1000人あたりの大学生数(人) (2020年) 山 22.9 沖 縄 13.2 野 8.9 広 阜 21.9 14.9 19.1 10.2 12.8 14.2 24.0 10.5 14.3 08 *大学院生を含む 19

回答募集中 回答数: 0
1/17