学年

教科

質問の種類

数学 高校生

線を引いたところの意図がよく理解できません。mのとこがわかってないのですがどういうことか教えていただきたいです🙇

[2]複素数1の12乗根を 20, Z1,Z2,…, z11 とし, Zo=1とする。 Zkk=0,1,2, ....... 11) の偏角を0とし, 0=0<<<<<2πとすると T 0₁ = = Ok オ H である。 オ の解答群 Z₁ = 1 2 Zk=cos 2KTL 12 2kT tisin k 12 π ① ん6 k π 4 k+1 12 k+1 π π 6 k+1 4 2k-1 2k-1 2k-1 π ⑥ 12 一π ⑦ π ⑧ TC 6 4 Zk"=Zzkとなる2以上で最小の自然数をMと表し, kの値によってMの値が どうなるか, 太郎さんと花子さんは考察している。 太郎:20,21,22, ......, Z11 を複素数平面上に図示するとどうなるかな。 花子: 20,21,22, ..., Z11 の絶対値はどれも1だから, 偏角について考える とよさそうだね。 太郎: 点 z12は点z2 と重なるね。 花子: 点 21, 214, ······についても同じように考えると, k=1のときのMの値 がわかるね。 k=1のときM=13であり, k=2のときM= である。 m Z₁ = Z₁ M M=3 となるようなんの値はん=キである。 Z2 =Zk 2x=1 複素数平面上の (M-1) 個の点 Zk, k, なんの値は ZkM M-1 が正方形の頂点となるよう m Z=Z k= ク ケ 3 =Z21d⑤ M-I Z=101 である。ただし、ケとする。 Z2:cosネルtigin/co1g fisin/cosotismQ T=0+2nπL k=6n 10.6 (第3回 25 ) M- (costism) M-I cosmos='ntisinnoyin=cosQ+ismo 1=7 min 共

回答募集中 回答数: 0
物理 高校生

大問27と大問28が何回解説読んでも分かりません、、 特に分からない点は式の変形(大問27の(3))となんでこの公式を使うのかです!

27 鉛直投げ上げ 数 p.32~33 27 小球を初速度 24.5m/sで鉛直上向きに投げ上げた。 重力加速度の 大きさを9.80m/s2 とする。 (1) 鉛直下向きに 4.9m/s (2) 30.6m (1) 3.00 秒後の速度 (速さ [m/s] と向き) を求めよ。 (2) 小球が達する最高点の高さん [m] を求めよ。 (3) 1.00 秒後と 4.00 秒後 (3) 投げ上げてから高さ19.6mの所を通過するまでの時間t[s] を求 めよ。 v=24.5-9.80×3.00= -4.9m/s (1) 「v=vo-gt」より 鉛直下向きに4.9m/s (2) 最高点では小球の速度は0となるので, 最高点に達するまでの 時間は [v=vo-gt」 より よってt=2.50s 0=24.5-9.80t 「y=cot-- 11/1/20より 1 h=24.5×2.50- -×9.80×2.502≒30.6m 2 (3) 小球は 19.6mの点を上昇しながら通過し 最高点に達した後, 下降に転じ再び 19.6 mの点を通過する。 よって求める時間は 2つとなる。 30.6m 19.6m 「y=vot-122gt」より 1 19.6=24.5t- ×9.80×2 2 t2-5.00t+4.00=0 (t-1.00) (t-4.00)=0 鉛直投げ上げの式は鉛直上向き を正としているので、速度が負 の場合は、鉛直下向きに運動し ていることを表す。 (2)の別解)-v=-2gy」 より 02-24.52=-2×9.80xh よって ん≒30.6m よってt=1.00, 4.00 したがって 1.00 秒後と 4.00 秒後 28 鉛直投げ上げ 教 p.32~33 28 ビルの屋上の点Pから物体を鉛直上向きに速さ 4.9m/s で投げた。 重力加速度の大きさを 9.8m/s2 とする。 (1) 1.0秒 (2) 29m (1) 投げてから、 再び点Pにもどるまでの時間は何秒か。 (2) 投げてから3.0秒後に地面に達したとすると, 点Pの地面から の高さは何mか。 (1) 「y=oat-1/12gf」より、点Pにもどるまでの時間を f[s] とす 2 ((1)の別解) 再び点Pにもどっ てきたときの物体の速度は - 4.9m/s だから,「v=vo-gt」 より ると 0=4.9t- ×9.8×2 よってt=1.0s (2) 「y=vot-1/12gt2」より,点Pの地面からの高さを ん 〔m〕 とする 1 とん=4.9 × 3.0 - ×9.8×3.0²=-29.4≒-29m よってt=1.0s 2 よって h=29m 4.9=4.9-9.8t

回答募集中 回答数: 0
数学 高校生

この問題の1番について、 a+5、a +3を2つの自然数 を用いて表していると思うのですが、なぜ文字は自然数 K のみだけ、とかじゃだめなんでしょうか?

例題 108 倍数 互いに素に関する証明 今は自然数とする。 α+5は4の倍数であり, α+3は6の倍数であると α+9は12の倍数であることを証明せよ。 自然数αに対し, a と α+1は互いに素であることを証明せよ。 CHART & SOLUTION 倍数である, 互いに素であることの証明 p.426 427 基本事項 1.5 を自然数として α+5=4m, a+3=6nと表される。そして、「αの倍数かつ の倍数ならば ともの最小公倍数の倍数」であることを利用する。 また、aとbが互いに素のとき 「akが6の倍数ならば、kはもの倍数」であることを 利用してもよい ( 参照)。 (2) 互いに素である 最大公約数が1 最大公約数をg とおいて,g=1であることを証明すればよい。 自然数 A,Bについて AB=1 A=B=1 を利用する。 解答 なぜ 同じ買だめ? 経と同じ異だめ? (1)+5,α+3 は,自然数 m n を用いて a+5=4m, a+3=6n と表される。 a+9=(a+5)+4=4m+4=4(m+1) ① a+9=(a+3)+6=6n+6=6(n+1) ② よって、 ① より α+9 は4の倍数であり, ② よりα+9 は 6 の倍数でもある。 したがって, α+9は4と6の最小公倍数12の倍数である Tisan's 割る数が 4章 互いにか13 素数とは 別解 (1) ① ② から 4(m+1)=6(n+1) すなわち 2(m+1=3(n+1) 2と3は広いに素である から m+1は3の倍数 である。 よって m+1=3k(kは自然数) と表される。ゆえに a+9=4(m+1) 数と倍数

回答募集中 回答数: 0
1/14