学年

教科

質問の種類

数学 高校生

数Ⅱ黄チャート 高次方程式 基本例題62を別解2の方法で解かなきゃいけないんですけど、解き方を忘れてしまったので、解説お願いします🙇

104 基本 例題 62 解から係数決定 (虚数解) 00000 3次方程式 x+ax²+bx+10=0 の1つの解がx=2+i であるとき, 実数 の定数α, bの値と他の解を求めよ。 (山梨学院大 p.98 基本事項2.基本61 解 CHART & SOLUTION x=αがf(x)=0の解⇔f(α) = 0 代入する解は1個(x=2+i) で, 求める値は2個 (αとb) であるが, 複素数の相等 A, B が実数のとき A+Bi=0 A = 0 かつ B=0 により,a,bに関する方程式は2つできるから, a,bの値を求めることができる。 また,実数を係数とするn次方程式が虚数解αをもつとき,共役な複素数も解であるこ とを用いて,次のように解いてもよい。 別解 2αとが解であるから, 方程式の左辺は (x-α)(x-2) すなわち x-(a+α)x+a で割り切れることを利用する。 別解 3 3つ目の解をkとして, 3次方程式の解と係数の関係を利用する。 x=2+iがこの方程式の解であるから ここで, (2+i=2°+3・2'i+3.2i+i=2+11i, (2+i)+α(2+i)+6(2+i) +10=0 (2+i)=22+2・2i+i=3+4i であるから 2+11i+α(3+4i)+6(2+i) +10=0 iについて整理すると 3a+26+12,4α+6+11 は実数であるから 3a+26+12+(4a+6+11)i = 0 3a+2b+12=0, 4a+b+11=0 これを解いて a=-2,b=-3 ゆえに、方程式は x-2x2-3x+10=0 f(x)=x-2x2-3x +10 とすると f(-2)=(-2)-2-(-2)2-3-(-2)+10=0 よって, f(x) は x+2 を因数にもつから f(x)=(x+2)(x²-4x+5) したがって, 方程式は (x+2)(x-4x+5)=0 x+2=0 または x2-4x+5=0 x2-4x+5=0 を解くと x=2±i よって, 他の解は x=-2, 2-i 別解 1 実数を係数とする3次方程式が虚数解 2+i をもつ から,共役な複素数 2-iもこの方程式の解である。 よって,x+ax²+bx +10 は{x-(2+i)}{x-(2-i)} すなわち x4x+5で割り切れる。 mfx-2=i と変形して 両辺を2乗すると x2-4x+5=0 これを利用して x+ax²+bx+10の次数を 下げる方法 (別解 1の3行 目以降と同じ) もある。 (p.93 基本例題 55 参照) この断り書きは重要。 A, B が実数のとき A+Bi=0 ⇔ A=0 かつ B=0 ← 組立除法 1-2-3 10-2 -2 8-10 1-4 50 の部分の断り書きは 重要。

回答募集中 回答数: 0
数学 高校生

この問題なぜmは5と6の間だにあると想像できるのですか? 僕は最大が5なので5/2a -2<=5ではないかと考えました、

◆文字式の掛けたり割ったりは, 「THE step1 例題で鉄則をつかむ × 例題 1 「THE ア x< イ αは定数とする。xについての不等式 2x5a-4を満たす』の値の範囲は, a- ウである。これを満たす最大の整数xが5であるとき I ア イ ウ a- オより,αは |カキ ク <a≤ ケコ を満たす。 サ 鉄則 1 不等式の解でく,,>, ≧のどれを選ぶかは, 数直線で判断 xmを満たす最大の整数xが5であるとき、定数はだいたい5と6 の間にありそうなことは想像ができる。でも, mが「5より大きい or 5以 「?」 や 「6より小さい or 6 以下?」 といった細かいところは,すぐにはわ からない。そんなときは、数直線をかき、目で見て丁寧に判断をしよう。 際どい場合をすべて数直 線で表すと, 正しい状況 を目で見て判断できる。 ここでは, (i), (Ⅲ)が正しい 状況なので は 5<m≦6を満たさなけ ればならない。 (i) =5の場合 (ii) 5<<6の場合 (i) =6の場合 m m 0 1 2 3 4 5 6 x 0 1 2 3 4 (5 6 x 0 1 2 3 4 5 6 解答解説 m 2x<5a-4より, 5 x<- 2a-2 ・ア, イ, ウの(答) A これを満たす最大の整数xが5であるとき、上の式の右辺は, 基礎不等式の性質 を確認 不等式の両辺を同じ正の数で割っても 不等号の向きは変わらない。 数学-6

未解決 回答数: 0
1/140