学年

教科

質問の種類

数学 高校生

1番は解決しました。2番はなぜ外すことができるのか教えてほしいです。

考える。 EU), であるこ 都産大 ] で、次の C BU (2) ACB が成り立つとき, A, B を数 が同時に成り立つことである。 線上に表すと, 右の図のようになる。 ゆえに, ACB となるための条件は k-6≦-2... ①, 3≦k ... ② k-6-2 3 kx これと②の共通範囲を求めて ①から k≤4 3≦k≦4 =xlxは物を全体集合とする。ひの部 3 ←左の図 をかいて 8-14 +7. -+5) ST. ANB B(2.5)であるから a+1-5 =2のとき SEA ゆえに a+7=9, a²-4 よって A=12.4.5), B={4, g このとき、AN(25) となり a+7=5, a 練習 1から1000までの整数全体の集合を全体集合とし,その部分集合A, B, C-2 のとき ③47 A={nnは奇数, n∈U}, B={n|n は3の倍数でない, nEU}, C={n|n は 18 の倍数でない, nEU} とする。このとき, AUBCCであることを示せ。 A={n|n は偶数,nEU}, B={n|nは3の倍数,n∈U} 偶数かつ3の倍数である数は6の倍数であるから AnB={nnは6の倍数, n∈U} また,C={n|n は 18 の倍数, n∈U}であり,18の倍数は6の CCANB & J 倍数であるから よって A={2, 4.5), B=(4. このとき、ANB ={2}となり、 上から a=2 [←BC30以下の自然数全体を全体集合 「〜でない られて このこともA={2, 4, 6, 8, 10, 12, の集合をB5の倍数全体の集合 (1) ANBOc (2 ることの着 30}. B={3,6,9,12,15,18, 21, 24, 27, 30), .0)- CCAUB ド・モルガンの法則により, An=AUBであるから 0 よって ② CAUB すなわち AUBCC 検討 ド・モルガンの法則 AUB=A∩B, ANB=AUB が 成り立つことは,図を用いて確認できる。 ←QCPによって C=(5, 10, 15, 20, 25, A∩B∩C={30} BUC 。 (a) U .0) まず, AUB=ANBについて, AUB は図(a) の斜線部分, AnBは図(b)の二重の斜線部分である。 の ={3,5,6,9,10,12, よって AN(BUC)= A∩B={6,12,18,2 (AUB) NC= (b) U O が AUB B (b) 部分が 重なり合った 次のことを証明せ ANB SO (1) A={3n-1/r 図 (a) の斜線部分と図(b) の二重の斜線部分が一致するから ALIZ (2) A={2n-1| xEB とすると, x=6

回答募集中 回答数: 0
数学 高校生

(3)の問題です。なぜa=25/4を境に場合分けをするのかが解説を読んでもわかりません。どなたか教えていただけないでしょうか。

完答への 道のり AB 正三角形AQR ができる条件を場合に分けて © E が点 Q, C が点Rとなる確率を求めることができた。 正三角形AQR ができる確率を求めることができた。 白玉だけを取り出して正三角形AQR ができる条件をもれなく考えることができた。 F 白玉だけを取り出して正三角形AQRができる確率を求めることができた。 条件付き確率を求めることができた。 B4 図形と方程式 (40点) 座標平面上に円 C:x2+y2 = 25 と直線l: x+2y=10 があり、連立不等式x+2y10 fx2+y2 S25 A の表す領域をDとする。 (y≥0 (1)円Cと直線lの共有点の座標を求めよ。 また, 領域Dを図示せよ。 (2) (6,0)を通る直線の中で,円Cと y>0の範囲で接するような直線の方程式を求めよ。 (3)aは 6≦a≦10 を満たす実数とする。 点(x, y)が領域D内を動くときの最小 値を とする。 αの値で場合分けをして, mをαを用いて表せ。 x-a 配点 (1) 10点 (2) 12点 (3) 18点 解答 (1) C:x+y2 = 25 ① l VA l: x+2y=10 C ②より x=-2y+10 ②' ②'を①に代入して (10-2y) +y2=25 2-8y+15=0 (y-3)(y-5)=0 y=3,5 44 - 15 (4, 3) 0 5 x -5 円Cと直線lの共有点の座標は、 連立方程式①、②の実数解である。 解答ではxを消去して yの2次 方程式を導き、それを解いて共有点 のy座標から求めたが,yを消去し てx座標から求めてもよい。

未解決 回答数: 1
1/20