学年

教科

質問の種類

数学 高校生

(2)について なぜ側面の塗り方は数珠順列ではなく、円順列なのですか?

PR 第1章 場合の数 209 立方体の各面に、隣り合った面の色は異なるように, 色を塗りたい。 ただし, 立方体を回転させ 21 て一致する塗り方は同じとみなす。 (1)異なる6色をすべて使って塗る方法は何通りあるか。 (2)異なる4色をすべて使って塗る方法は何通りあるか。 (1) 上面の色を1つ固定すると,下面の塗り方は 5通り そのおのおのに対して, 側面の塗り方は,異なる 4個の円順列で区別 できる (4-1)!=3!=6(通り) (1) 1色で固定 展開図 (上面を除く) 下面 1章 PR PP 210 面の塗り方は異なる2個の円順列に等しく (2-1)!=1!=1(通り) 長方形の 125 よって、異なる6色をすべて使って塗る方法は 5×6=30(通り) 6つの面を異なる4色で塗るには, 1組の向か い合う2面を1色で塗り, もう1組の向かい合う 2面を別の1色で塗る。 4色から2組の向かい合う面に塗る2色の選び方 八重は4C2=6(通り) 長方 異なる色 側面は円順列 上下の面の色が異なるから, じゅず順 列ではない。 HINT (2) 回転させると一致する場 合があるから注意。 同色で 固定 色んな色 2組の向かい合う面の色を固定すると、残りの2 共 MAHOES 同色で 固定 固定すると同 まわしたとき かぶってほう ACTUACIOMAHA 2!通りではない。 のとき よって、異なる4色をすべて使って塗る方法は [1 2 6×1=6(通り) (回転させると一致する) 35-15( () 04-8+Se n (n≧2) を求めよ。 通りあるか。 ed

回答募集中 回答数: 0
数学 高校生

これの⑶ほんとに意味わかんないです、、 教えてくださいー😭

364 基本例題 21 組分けの問題 ( 1 ) 6枚のカード1,2,3,4,5,6がある。歌 (1) 6枚のカードを組Aと組Bに分ける方法は何通りあるか。 ただし,各組に 少なくとも1枚は入るものとする。さび (2) 6枚のカードを2組に分ける方法は何通りあるか。 基本20 (3) 6枚のカードを区別できない3個の箱に分けるとき, カード1,2を別々の 箱に入れる方法は何通りあるか。ただし,空の箱はないものとする。 指針 重複順列 → (1) 6枚のカードおのおのの分け方は, A,Bの2通り。 重複順列で 2通り ただし、どちらの組にも1枚は入れるから, 全部を A またはBに入れる場合を除くために -2 (2) (1) で, A,Bの区別をなくすために ÷2 (3) 3個の箱をA, B, C とし, 問題の条件を表に示すと, 右のようになる。 よって,次のように計算する。 (3,456 を A, B, C に分ける) (Cが空箱になる = 34,56をAとBのみに入れる) CHART 組分けの問題 0個の組と組の区別の有無に注意 このうち, A,Bの一方だけに入れる方法は 2通り よって, 組 A と組Bに分ける方法は 64-262 (通り) (2) (1) A,Bの区別をなくして 1 2 3 4 ↑ ↑ ↑ A A or or B B (1) 6枚のカードを,A,B2つの組のどちらかに入れる方 | A,Bの2個から6個取 解答 法は 2664 (通り) る重複順列の総数。 24通り AAA or or or or BBB B 3,4,5,6から少なくとも1枚- 練習 (1) 7人を2つの部屋 A,Bに分けるとき,どの部屋も1 ③ 21 望を 箱 カード A B C 1 2 62÷2=31 (通り) (3) カード1, カード2が入る箱を,それぞれA,Bとし, (3) 問題文に「区別できな 残りの箱をCとする。 A,B,Cの3個の箱のどれかにカード 3,4,5,6を入 れる方法は 34通り い」とあっても、カード 1が入る箱, カード2が 入る箱,残りの箱,と区 別できるようになる。 Cが空となる入れ方は, このうち,Cには1枚も入れない方法は したがって 3-24=81-16=65 (通り) A,Bの2個から4個取 る重複順列の総数と考え て 24通り (2組の分け方) ×2! =(A,B2組の分け方) L△

回答募集中 回答数: 0
数学 高校生

第2問(2)のコサシスセソについてです。 2枚目の解答の波線部分がよく分からないので、分かる方がいらっしゃったら教えて頂きたいです🙇‍♀️

第2問~第4問は、いずれか2問を選択し、 解答しなさい。 第2問 選択問題 (配点20) 図1のように、東西南北に作られた碁盤の目状の道路があり、交差点と交差 点の間の1区画の距離は1km である。 0° 0 が対応している。 .P 北 図1 地点Oから地点P までの最短経路について考えてみよう。 東に1区画進むことを「→」,北に1区画進むことを「↑」と表すことにすると 一つの最短経路に対して、「→」3個 「1」 3個の並べ方が一つ対応するので最 短経路の総数はアイ通りと求められる。 東 西 最短経路の距離は6km であるが,初めて地点Pに到達するまでの距離が8km になるような経路の総数はいくつになるだろうか。 ただし, 図1の道路のみを移 動し、交差点以外の場所で進む方向を変えないこととする。 例えば、距離が8km になるような経路には図2、図3のような場合がある。 P P 南 図2 図3 西に1区画進むことを 「←」 南に1区画進むことを「↓」と表すことにし, 経 路に対応した←↑↓の順列を道順ということにすると 図2の経路には, 道順→↑←↑→→→↑ 図3の経路には, 道順 →↑↑→↓→↑↑ (第6回3) (数学Ⅰ・数学A 第2問は次ページに続く。) (1) ↑↓の順列には対応する経路が存在しないものも含まれる。 例えば、道 には対応する経路がない。 ウ 順 HO I と する。 I nom O ② ↑↑↑↓→→1③→→→1→1-1- の解答群 (解答の順序は問わない。) オ ↑→↓→↑↑↑ 2017 (2) 図2のように, 「←」 が含まれるような道順の総数を考える。ただし、例えば, 道順が→→→↑↑↑← → のように最短経路で地点Pに到達した後、1kmの区 仕復して再び地点Pに到達する経路も含めて考える。 」か「↑」 が3個の順列が一つ対応 一つの経路には、「 T20 2015 40ATEMONEY (1) での考察から 「→」が4個, 「←」 が1個の5個については、 並びにオ という制約があるので,「→」が4個,「←」が1個の5個の並び方は カ 通りある。 $33458200% AS これに 「↑」を含めた8個を並べると, 「←」が含まれる道順の総数はキクケ 通りある。 同様に考えると、図3のように,「↓」が含まれる道順の総数はコサシ 通 01030943-1 りある。 したがって 初めて地点Pに到達するまでの距離が8km になるような経路 の総数はスセソ 通りと求められる。 ① tttt→→ の解答群 + は左端にのみ並ばない 「←」は左端にも右端にも並ばない (第6回4) JUTUSA ① 「←」は右端にのみ並ばない

回答募集中 回答数: 0
1/96