学年

教科

質問の種類

数学 高校生

29.3 このような証明方法でも問題ないですよね??

基本例題 29 絶対値と不等式の不 82 00000 次の不等式を証明せよ。 明などの基本の (1)|a+b|≦|a|+|6|| (2) |a|-|6|≧|a+b) (3) la+b+cl≦lal+10+| 指針▷(1) 例題 28 と同様に,(差の式) ≧0は示しにくい。 重要 de+pas\\&+D\² $328 30 解答 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0の A≧B⇔A'≧B'A'-B'≧0の の方針で進める。また、絶対値の性質(次ページの①~⑦) を利用して証明してもよい。』 (23)と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 *****RO CHART 似た問題 11 結果を利用 ② 方法をまねる (1)(|a|+|6|)²-la+b=a²+2|a||6|+b²-(a²+2a6+62) ◄|A|²=A² <|ab|=|a||6| 2 =2(|ab|-ab)≧0 よって la+b≧(|a|+|6|) 2 |a+b≧0,|a|+|6|≧0から la+6|≦|a|+|6| 別解] 一般に,一|a|≦a≦|a|,-|6|≦6≦|6| が成り立つ。 H この不等式の辺々を加えて (a+16)≦a+b≦|a|+|6| したがって |a+6|≦|a|+|6| de (2)(1) の不等式での代わりにa+b, bの代わりに―6と おくと |(a+b)+(−b)| ≤|a+b|+|-b| de+pas ゆえに |a|-|6|≦la+6| よって |a|≧|a+6|+|6| 別解 [1] |a|-|b|<0 のとき よって a+b≧0であるから,|a|-|6|<|a+6|は成り立つ。 [2] |a|-|6|≧0のとき |a+b1²-(|a|-|6|)²=a²+2ab+b²-(²-2|a||6|+62) =2(ab+lab)≧0 よって (|a|-|6|)2≦|a+b2 |a|-|6|≧0,|a+b≧0であるから [1], [2] から lal-1b|≤|a+bl (3) (1) の不等式での代わりにb+c とおくと la+(b+c)|≦la|+|b+cl a+b+cl≦|a|+|6|+|c| 05 608- -B≦A≦B +S) ≤ ( ⇔[A]≦B ズームUP参照 DOCU (ay lal+1b/+/c/ a66650s |a|-|6|≦la+6| この確認を忘れずに。 |A|≧A, AI≧-A から -|A|≦a≦|A| P |a|-|6|<0≦|a+6 [2] の場合は, (2) の左辺, 右辺は0以上であるから, (右辺) (左辺)20を示 す方針が使える。 +04 105 (0+ 14-08- 133c¹2 (1) の結果を利用。 (1) の結果をもう1回利用。 (|b+cl≦|6|+|c|) 1+RB+++

回答募集中 回答数: 0
数学 高校生

青チャート 数2 不等式の証明 例題29(3) 黄色マーカー部の箇所で、なぜ|b+c|が|b|+|c|になったのか分かりません。 (1)の結果をもう一度利用と書いてありますが、そもそもそこが理解できません。なので(2)も場合分けで考えました。 (1)を利用するの意味を教え... 続きを読む

MAKE 52 XX 基本例題 29 絶対値と不等式 次の不等式を証明せよ。 (1)a+b≧a|+|6| (2)|a|-|6|≦la+b] (3)|a+b+cl≦|a|+|6|+| 基本28 重要 30 指針 > (1) 例題 28 |A= A を利用すると、 絶対値の処理が容易になる。 そこで ......... ABA'≧B'⇔A'-B'≧0 A≧0, B≧0のとき の方針で進める。また、絶対値の性質 (次ページの①〜⑦) を利用して証明してもよ (2),(3) 似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 ②2 方法をまねる 解答 (1) (a+b)²-|a+b|²=a²+2|a||b|+b²-(a²+2ab+b²) =2(abl-ab)≧0 |a+b≤(a+b1)² よって la+b≧0,|a|+|6|≧0から |a+6|≦|a|+|6| 別解] 一般に,|a|≦a≦|a|-|66|6| が成り立つ。 この不等式の辺々を加えて -(|a|+|6|)≦a+b≦|a|+|6| したがって la+6|≦|a|+|6| (2) (1) の不等式でαの代わりに a +6, 6 の代わりに -6 と おくと (a+b)+(-6)≦la+6+1-6| よって |a|≦a+6|+|6| [別解] [1] |a|-|6| <0のとき ア ゆえに |a|-|6|≦la+61 a+b≧0であるから, |a|-|6|< la +6は成り立つ。 [2] |a|-|6|≧0のとき よって |a+6-(|a|-|6|²=a²+2ab+b²-(α²-2|a||6|+62) =2(ab+lab)≧0 よって (la|-|b|)² ≤|a+b|² |a|-|6|≧0,|a+b≧0であるから [1], [2] から la|-|b|≤|a+b| (3) (1) の不等式でもの代わりにb+c とおくと la+b+c)|≦|a|+|b+cl la+b+cl≦|a|+|6|+|c| ≦|a|+|6|+|c| |a|-|6|≦|a+6| 8800000 4 at ◄|A|²=A² |ab|=|a||6| この確認を忘れずに。 |A|≧A, A≧-A か |-|A|≦a≦|A| -B≦A≦B ⇔ [A]≦B <ズーム UP 参照。 <|a|-|6|<0≦la+6 [2] の場合は, (2) 左 右辺は0以上であるから (右辺) (左辺)≧0を示 す方針が使える。 練習 (1) 不等式√²+2+1√x²+y²+1≧lax+by+1」を証明せよ。 ③29 (2) 不等式|a+b|≦|a|+|6|を利用して,次の不等式を証明せよ。 (ア) |a-6≦|a|+|6| (イ) |a|-|6|≧|a-6102 (1) の結果を利用。 (1) の結果をもう1回利用 (|b+cl≦|6|+|c) Cp.60 EX19 ズーム UP その内 絶対値 数学Ⅰで いて € なわち, 絶対値を 例題 29 に (証明で が多く煩 そこで, ~ (1) 指針 ない。 例題28 (2) 左辺 lal-le いが, 証明 とみ ここ (3) は, (1) 参考 (1). 例題 29 (1) 等号 すなわ (2) 等号7 の代わ (3) 等号7 おいた a(b+c) また, よって,

回答募集中 回答数: 0
数学 高校生

29.3 記述はこれでも大丈夫ですか??

52 KONGRE 基本例題 29 絶対値と不等式 8X①000 次の不等式を証明せよ。 (1) |a+b|sa|+|bl(2) la|-|b|≤|a+b)(3) |a+b+c|≤|a|+|b|+| 基本28 重要 30 de+pas 指針 (1) 例題 28 と同様に,(差の式)≧0 は示しにくい。 辺 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0の A≧B⇔A'≧B'⇔A'-B'≧00mm) の方針で進める。また,絶対値の性質(次ページの①~⑦) を利用して証明してもよ (2),(31) と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 方法をまねる 解答 口(1)(|a|+|6|)²-|a+b=a²+2|a||6|+b²-(a²+2ab+b2) =2(abl-ab)≧0 この不等式の辺々を加えて (2)(a よって la+b≧(|a|+|6|) |a+b≧0,|a|+|6|≧0から |a+b|≦|a|+|6| この確認を忘れずに。 別解一般に,-|a|≦a≦al, -16≧0≦16 が成り立つ。|4|≧4,|A|≧-A から -|A|≦a≦|A| −(|a|+|b|)≤a+b≤|a|+|b| したがって |a+6|≦|a|+|6| (2) (1) の不等式でa の代わりに a+b, の代わりにと おくと de+nas (a+b)+(-6)|≦|a+6+1-6| よって |a|≧|a+6|+|6| [別解 [1] |a|-|b|<0のとき a+b≧0であるから,|a|-|6|<|a+6|は成り立つ。 [2] |a|-|6|≧0のとき METOD |a+bP-(|a|-|6|)²=a²+2ab+b2-(²-2|a||3|+62) =2(ab+labl)≧0 ゆえに |a|-|6|≦la+b1 よって (|a|-|6|)≦la+b2 |a|-|6|≧0, la +6|≧0であるから よって (1) [1],[2] から lal-lb|≤|a+b| (3) (1) の不等式での代わりにb+c とおくと la+(b+c)|≦|a|+16+cl la+b+cl≦|a|+|6|+|c| どのよ ≦|a|+|6|+|c| 不 oktob SARA ◄|A|²=A² |||ab|=|0||0| 10-357 20 TATAR -B≤A≤B ⇔ [A]≦B ズーム UP 参照。 lal-1b|≤|a+b||+o)S\ |a|-|6|<0≦|a+6 [2] の場合は,(2) の左辺 右辺は0以上であるから、 (右辺(左辺) 0 を示 す方針が使える。 BY 05 (67)S 1930 次の不等 不等式√²+ 62 +1 √ x2+y2+1≧lax+by+1を証明せよ ** (1) の結果を利用。 (1) の結果をもう1回利用。 (16+cl≦|6|+|cl)

回答募集中 回答数: 0
数学 高校生

2の、別解の解き方がわからないです! 詳しく教えていただけますか?

X5/2 10 (2 基本例題 29 不等式の証明 (絶対値と不等式) 次の不等式を証明せよ。 00000 ①1 la+bl≦|a|+|b| lal-b|sla-bl1000 p.38 基本事項 4. 基本 28 S A:基本的に、ブソウにとけばよい。 ⓐ(1)は反対でやってれ? OLUTION 2人ならであるんだーって思うのでOKです。 似た問題 1 結果を使う 2② 方法をまねる (2) ag-bでおきかえよう とするアイデアはどこから (1) 絶対値を含むので、このままでは差をとりにくい。 [AP=A2 を利用すると, 絶対値の処理が容易になる。 よって,平方の差を作ればよい。...... [ (2) 不等式を変形すると |a|≦la-61+16 (1) と似た形 ← そこで,(1) の不等式を利用することを考える。の方針 Oath =(a+b² 解答 xlatbl = atb. (1) |a|+|62-la+b1=(|a|+2|a||3|+162)-(a+b)2 [inf. A≧0 のとき Nathatb=a²+2ab+b2-(a²+2ab+b2) |-|A|≦A=|4| =2(ab-ab) ≥0 ...... A<0 のとき x(1) -|A|=A<|A| しまって (a+b=(|a|+|6|)² であるから一般に |a+b≧0,|a|+|6|≧0であるから -|A|SASA |a+6|≦|a|+|6| 更に,これから 30 $=x√&st 別解-|a|≦a≦|al, -16|≦b≦|6|であるから |A|-A≥0, |A|+A≥0 辺々を加えて __(|al+16)≦a+b≧la|+|6| of+s |a|+|6|≧0であるから la+b≦|a|+|6| ◆c≧0 のとき -c≤x≤c = |x|≤c (2) (1) の不等式の文字α を a-b におき換えて そのとき x≤-c, c≤x | (a-b)+6|≦la-6|+|6| $30 $=1, @[x]c |a|≦|a-6|+|6| よって ゆえに lal-lb|sla-bl 別解 [1] |a|-|6| < 0 すなわち |a| <|6| のとき (左辺)<0, (右辺)>0 であるから不等式は成り立つ。 [2] |a|-|6|≧0 すなわち ! la-b²²-(al-|b)=(a-b)²-(a²-2|ab|+b²) 号付録=2(−ab+lab)≧0 よって (al-b)²≤la-b1² |a|-|6|≧0, la-6|≧0であるから alal-lb|sla-bl=2007 CHART O 47 ものは存在するから 1章 (2) 2 2②の方針が負 の場合も考えられるの ≧のときで、平方の差を作るには 場合分けが必要。 inf 等号成立条件 (1) は ① から |ab|=ab, すなわち, ab≧0のとき。 よって, (2) は (a-b)≧0 ゆえに(a-b≧0かつb≧ または (a-b≦0かつb≧ すなわち a b≧0 また a≦b≧0のとき。 TOL 等式・不等式の証明

回答募集中 回答数: 0
数学 高校生

(2)の問題でaをa−bに置き換える理由が分かりません。なんでですか?

00000 _8 基本事項 D 形して 差を作る。 (C) 作る。 2√6 >0 3 性紙) 170 vor 47 基本例題 29 不等式の証明 (絶対値と不等式) ①①①①① 次の不等式を証明せよ。 (1)|a+b|≦|a|+|6| (2) |a|-|6|≦|a- p.38 基本事項 4. 基本 28 1章 CHART SOLUTION ER 似た問題 1 結果を使う 2 方法をまねる (1) 絶対値を含むので,このままでは差をとりにくい。 |A=A2 を利用すると, 絶対値の処理が容易になる。 よって, 平方の差を作ればよい。 (2) 不等式を変形すると |a|≦la-6|+|6| (1) と似た形 ← ← そこで,(1) の不等式を利用することを考える。 JED ①の方針 解答 (1) (4|+|6|2-|a+6=(|a|+2|a||6|+|6)-(a+b)2 linf. A≧0 のとき =α²+2|ab|+b²-(a²+2ab+b2) -|A|≦A=|4| =2(abl-ab)≧0 4<0 のときくと -|A|=A<|A| よって la +6=(|a|+|6|)2 であるから, 一般に |a+b≧0,|a|+|6|≧0であるから -|A|A|A| |a+6|≦|a|+|6| 更に,これから を |A|-A≧0,|A|+A≧0 別解-|a|≦a≦al, -1660であるから 辺々を加えて -(|a|+|6|)≦a+b≦|a|+|6| |a|+|6|≧0であるから |a+b|≦|a|+|6| ◆ c≧0 のとき (2) (1) の不等式の文字αを a-bにおき換えて c≦x≦clxl≦c x≤-c, c≤x | (a-b)+6|≦la-6|+|6| .30 S=x|x|≥c |a|≦|a-6|+|6| よって ゆえに |a|-|6|≦|a-6| 別解] [1] |a|-| 6| < 0 すなわち |a| <|6| のとき ◆②の方針 |a|-|6|が負 の場合も考えられるの (左辺) <0, (右辺) > 0 であるから不等式は成り立つ。 SULT-QUEN [2] |a|-|6|≧0 すなわち |a|≧|6| のとき で、 平方の差を作るには 場合分けが必要。 |a-61-(|a|-161)²=(a-b)(a²-2|ab|+62 ) inf 等号成立条件 =2(−ab+lab)≧0 よって (|a|-|6|)2≦la-6|2 |a|-|6|≧0,|a-b≧0であるから (1) は ① から, labl=ab, すなわち, ab≧0 のとき。 よって, (2) は (a-b)≧0 ゆえに (a-b≧0かつb≧0) または (a-b≦0かつb≧0) すなわちab≧0 または a≦b≧0のとき。 la|-|b|≤la-blo PRACTICE・・・ 29 ② 不等式 lathsla|+|b」を利用して、次の不等式を証明せよ。 - 等式・不等式の証明

回答募集中 回答数: 0
数学 高校生

2番の解答のところで、aの代わりにa+b、bの代わりに-bとありますが、この値はどうやって決めているのですか?

の方針で進める。また, 絶対値の性質(次ページの ①~①) を利用して証明 52 O0 基本 例題29 絶対値と不等式 次の不等式を証明せよ。 (1) |a+b|sla|+l| (3) la+b+clsldy (2) la|-|b|sla++6| 基本28 指針>(1)例題 28 と同様に,(差の式)20は示しにくい。 1A°=A° を利用すると, 絶対値の処理が容易になる。 そこで A20, B20のとき A2B→ A2B'→ A°-B'20 (2), (3) (1) と似た形である。そこで, (1)の結果を利用することを考えるとよ CHART 似た問題 [] 結果を利用 2 方法をまねる 解答 (1)(lal+||)ー1a+6パ=α+2|a||6|+68-(α°+2ab+6°) =2(lab|-ab)20 イA=A° の ab|=la|| la+of<(la|+|b|) la+b|20, lal+|6|20から 別解 一般に, 一lal<as_al, -|6|<b<|b| が成り立つ。 この不等式の辺々を加えて よって la+b|<lal+|| この確認を忘れた A|24, |A2- -14|SAS|| ー(lal+|b|)<a+6s\a|+||| イ-BSASB したがって →A|SB (2) (1)の不等式でaの代わりにa+6, bの代わりに-bと イズーム UP参品 おくと よって lal<la+6|+6| 別解 [1] Jal-l6|<0のとき la+b|20 であるから, |al-16|<la+6|は成り立つ。 [2] Ja|-|6|20のとき la+bf-(lal-|6|l)?=a°+2ab+ぴ-(α3-2|a||6|+6) ゆえに lal-|6|ハ_a+bl lal-l6<uslae (2]の場合は 右辺は0以上でお (右辺)-(左 す方針が使える。 =2(ab+\ab|)20 (lal-16|°<la+6P よって la|-|6|20, la+b20であるから [1], [2] から (3) (1)の不等式でbの代わりに6+cとおくと la+(b+c)|<la|+16+c| la|-|6|Sla+b|l lal-|b|<a+b| )の結果を削感 )の結果をもう」 16+c/sM+ 小_a+16|+lcl よって la+b+c|<lal+|6|+1c| 不要友の運問

回答募集中 回答数: 0