学年

教科

質問の種類

数学 高校生

61.1 このような記述でも大丈夫ですよね??

0000 式という えると の2 a+by^- 201 X [日本 2行目の式 1 x 解答 を断ってから 一割る。 なお (1)xを1の3乗根とすると 程式の左 ゆえに x³-1=0 (左辺=2 したがって を入れ 1-1- x この式と 1 ot Hit 基本例題 61 (1) 1の3乗根を求めよ。 (2)1の3乗根のうち, 虚数であるものの1つをとする。 (ア)2も1の3乗根であることを示せ。 1 えることが 1 指針 (1) (2) (1) w²+w³, +1+1, (w+2w²)²+(2w+w³²)² iznenkok. 2 (2) ア @= これを解いて, 1の3乗根は -1+√3i 2 練習 61 1の3乗根とその性質 基本58 3乗してαになる数,すなわち、方程式x=αの解を,αの3乗根という。 (1)で求めた方程式x=1の虚数解を2乗して確かめる。 (ア) (イ)は方程式x²+x+1=0, x=1の解→ ²+ω+1=0, ω²=1 2 -√3 i 4 口を よって, w2も1の3乗根である。 -91+2 (1) ω は方程式x+x+1=0, x=1の解であるから ω'+ω+1=0,ω'=1 よって x-1=0 または x²+x+1=0 -1+√3 i 2 とすると i 0 ² = ( = 1 + 2√³²)² =. 1-2√3 i+3i²_-1-√3i 2 とすると x³ =1 「POINT」 1. w²=(1-√3i)°_1+2√3i+3p _ _1+√3i 2 141 w² (x-1)(x²+x+1)=0 w²+w=(w³)² w+(w³) ² w²=w+w²=-1 w+1+w² w² よって また -=0 W ω'+ω+1=0から, w2=-ω-1 となり (w+2w³)²+(2w+w³)² = {w+2(-w-1)}²+(2w-w-1)² =(-w-2)²+(w-1)²=2w²+2w+5 +1= =2(-ω-1)+2+5=3 00000 (1) 200+50 (3) (w200+1)100+(ω100+1) 10 +2 3次方程式の解は複素数の 範囲で3個。 ω はギリシャ文字で、 オ メガ」と読む。 (検討) x=1の虚数解のうち、どち としても,他方が となる。よって、1の3乗根 it 1, w, w¹ ω'=1 を利用して, 次数を 下げる。 ω=-ω-1 を利用して、 次数を下げる。 12(w²+w+1)+3=2-0+3 としてもよい。 1の虚数の3乗根の性質 ①2+ω+1=0 ② ω'=1 がx2+x+1=0の解の1つであるとき,次の式の値を求めよ。 1 1 w² p.110 EX44 99 2章 11 高次方程式

回答募集中 回答数: 0
数学 高校生

55.2 値の知れないQ(x)を消したいからx^2-1=0としたいけどx=iと置いていいのか躊躇しました。求めるxが整数、自然数、有理数とか書いてなければx=iとおいてもいいのでしょうか?

-3x+71 求めよ。 る。......... -1)(x-2) りを考える。 った余りは、 弐または定数 て 1,2 b,cの値 りを見つける 1式)から ■ち b=3 ここの練習5 効である。 を ったときの すると, (-2)(x) 2) +R(x)) a)+R( 代入。 5であ 38 ► 重要 例題 55 高次式を割ったときの余り (1 x"-1 を (x-1)²で割ったときの余りを求 2以上の自然数とするとき, めよ。 (23x100+ 2x7 +1 を x2 +1 で割ったときの余りを求めよ。 指針 実際に割り算して余りを求めるのは非現実的である。 p.88~90 でも学習したように, ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意, B=0 を考える がポイント。 (12) ともに割る式は2次式であるから、余りは ax+b とおける。 (1) 割り算の等式を書いてx=1 を代入することは思いつくが, それだけでは足りない。 そこで、 次の恒等式を利用する。 ただし, nは2以上の自然数, α=1, 6°=1 α-b²=(a-b)(a-1+α-26+α"362+..+ab^2+b^-1) |x-1=(x-1)'Q(x) +ax+b••••• ① (2)x+1=0の解はx=±i x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 両辺にx=1 を代入すると ①に代入して x-1=(x-1)*Q(x+ax-a =(x-1){(x-1)Q(x)+α} 解答 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りをax+b 解 (1) 二項定理の利用。 とすると,次の等式が成り立つ。 x-1={(x-1)+1}"-1 0=a+b すなわち b=-a ここで, x-1=(x-1)(x"-1+x"-2+・・・・・・+1) であるから xn-1+xn-2+..+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 1+1+ ······ +1=α a=n よって b=-αであるから ゆえに, 求める余りは nx-n (2) 3x100+2x+1 を x² +1 で割ったときの商をQ(x), 余りを ax+b (a,b は実数) とすると,次の等式が成り立つ。 3x100+2x+1=(x2+1)Q(x)+ax+b 00000 3・1+2i+1=ai+b 4+2i=b+ai n 両辺にx=i を代入すると 3i100+ 27 +1=ai+b i100= (i2)50=(−1)=1, "= (i²) i=(-1)*i=i であるから すなわち a,b は実数であるから したがって 求める余りは 2x+4 [学習院大 ] a=2, b=4 b=-n 基本 53.54 =Cn(x-1)^+..+n Cz(x-1)2 +mCl(x-1)+1-1 =(x-1)^{(x-1)^^2+..+°Cz} tron ゆえに, 余りはnx-n また, (x-α)の割り算は微 分法(第6章) を利用するのも 有効である (p.305 重要例題 194 など)。 微分法を学習す る時期になったら,ぜひ参照 してほしい。 x=-iは結果的に代入し なくてもよい。 実数係数の整式の割り算で あるから、余りの係数も当 然実数である。 練習 (1) n を2以上の自然数とするとき, x” を (x-2)で割ったときの余りを求めよ。 (p.94 EX39 55 (2) xlo+x+1 を x2 +4で割ったときの余りを求めよ。 91 2章 10 剰余の定理と因数定理

回答募集中 回答数: 0
数学 高校生

62.1 方程式の解の1つをwとしているので x^2+x+1=0をw^2+w+1=0としてしまうと 二次方程式の2つの解がwで表せるようになってしまうので条件 と合わなくないですか??

100 0000 基本例題 62 x+x+1で割ったときの余り f(x)=x80-3x40 +7 とする。 の1次式 (1) 方程式x2+x+1=0の解の1つをω とするとき, f (w) の値をωの1 表せ。 (2) f(x) を x2+x+1で割ったときの余りを求めよ。 基本 53.61 重要 55 指針f(x) は次数が高いので、値を代入した式を計算したり、割り算を実行したりするのは い。 ここでは,これまでに学習した、次の方針に従って進める 高次式の値 条件式を用いて次数を下げる 割り算の問題等式 A =BQ+R の利用。 B = 0 を考える ω'+ω+1=0 (1) は x2+x+1=0の解であるから これを用いてまずの値を求め、その値を利用してf(ω) の式の次数を下げる。 (2) 求める余りはαx+b と表されf(x) = (x2+x+1)Q(x)+ax+b これにx=ω を代入すると f(w)=aw+b Q(x) は商 解答 (1) は x²+x+1=0の解であるから よって w²=-w-1, w²+w=-1 w²+w+1=0 また, 80=3・26+2, 40313+1 であるから (*) w³-1 3a+s=(w-1)(w²+w+1)=0 eee²=(a-1)=-(ω^+c)=(-1)=1) から1としてもよい。 は1の虚数の3乗根であ る。 f(w)=w8⁰-3w40 +7=(w³) ²6 w²-3(w³) ¹³.w+7 =126.(-ω-1)-3・13・ω+7=-4ω+6 (2) f(x) を x2+x+1で割ったときの商をQ(x), 余りをax+b (a,bは実数) とすると 練習 f(x)=(x2+x+1)Q(x)+ax+b ω'+ω+1=0であるから (1) から -4w+6=aw+b α, b は実数は虚数であるから a=-4, b=6 したがって 求める余りは -4x+6 f(w)=aw+b が成り立つ。 次数を下げて1次式に。 [参考] a b c d が実数, zが虚数のとき ① a+bz=0 ⇔ α = 0 かつ b = 0 ② a+bz=c+dz ⇔a=c かつ b=d [証明] [①の証明] (←) 明らかに成り立つ。 (⇒) b=0 と仮定するとz=- :=-1 このとき a=0 b=0 よって ② の証明は、(a-c)+(b-dz=0 として上と同様に考えればよい。 なお、上の①②は、p.62の①②を一般の場合に拡張したものにあたる。 2018をx²+x+1 で割ったときの余りを求めよ。 → (2) A=BQ+R 割る式B=0 を活用。 下の参考② を利用。 S 左辺は虚数,右辺は実数となるから矛盾。 基 3次 定業 指針 解 -18 (-1) すな これ よっ 左辺 した 別解 fC (x 右 こ し xC * E C

回答募集中 回答数: 0
数学 高校生

62.2 記述では解答のように(a,bは実数)って書く必要ありますか? また、解答の4行目の w^2+w+1=0はx^2+x+1=0でもいいですよね?

100 0000 基本例題 62 x+x+1で割ったときの余り f(x)=x80-3x40+7 とする。 の1次会 (1) 方程式x2+x+1=0の解の1つをω とするとき, f (w) の値をの 表せ。 (2) f(x) を x2+x+1で割ったときの余りを求めよ。 基本 53.61. 重要 55 指針f(x) は次数が高いので、値を代入した式を計算したり、割り算を実行したりするのは い。 ここでは,これまでに学習した, 次の方針に従って進める 高次式の値条件式を用いて次数を下げる ① 割り算の問題 等式 A=BQ+R の利用。 B = 0 を考える 解答 (1) は x2+x+1=0の解であるから w²+w+1=0 w²=-w-1, w²+w=-1 よって ゆえに wwww(-w-1)=-(ω'+ω)=-(-1)=1 (*) また, 80=3・26+2, 40 = 3・13+1であるから [証明] (1) は x2+x+1=0の解であるから w²+ω+1=0 これを用いてまずの値を求め、その値を利用してf (w) の式の次数を下げる。 (2) 求める余りはαx + b と表され f(x)=(x2+x+1)Q(x)+ax+6 これにx=ω を代入すると f(w)=aw+b =126.(-ω-1)-3・11・ω+7=-4ω+6 (2) f(x) x2+x+1で割ったときの商をQ(x), 余りをax+b (α, b は実数) とすると 練習 f(w)=w80-3w40 +7=(w³) ²⁰ w²-3(w³) ¹³.w+7 ω'+ω+1=0であるから (1) から -4w+6=aw+b a b は実数は虚数であるから a=-4,6=6 したがって 求める余りは -4x+6 62 f(x)=(x2+x+1)Q(x)+ax+b f(w)=aw+b a b c d が実数, zが虚数のとき ① a+bz=0 ⇔ α = 0 かつ b = 0 ② a+bz=c+dz⇔a=c かつ b=d Q(x) は商 [①の証明] (←) 明らかに成り立つ。 b=0 と仮定するとz=-- (*) @³-1 daty =(w-1)(w²+w+1)=0 から=1としてもよい。 は1の虚数の3乗根であ が成り立つ。 2018をx2+x+1 で割ったときの余りを求めよ。 ) る。 →(1) → (2) 次数を下げて1次式に。 8854A=BQ+R よって b=0 a=0 このとき ② の証明は, (a-c)+(b-d) z=0 として上と同様に考えればよい。 なお, 上の ① ② は, p.62 の ② を一般の場合に拡張したものにあたる。 割式B=0 を活用。 左辺は虚数,右辺は実数となるから矛盾。 下の参考② を利用。 I 指 し d た

未解決 回答数: 1
作文 高校生

専門学校をめざしている高三です。添削をお願いしたいです!🙇‍♂️ 次数も足りてないですし作文はとても苦手なのでアドバイスなどお願いします😭

私は将来たくさんのお客さんを笑顔に幸せにできるウェディングプランナーに 私は人の笑顔を見ること、笑顔にさせることが大好きです。他人の笑顔を見ると、 自分まで幸せな気持ちになります。SNSで、人の笑顔を見ることができ、幸せに携わる ことができる仕事はどのような仕事があるのだろうかと調べていたとき、ウェディングプランナ という職業に出会いました。新郎新婦さんのために親身になっているプランナーさんの姿は とてもかっこよく美しく見えました。同時に、「人の幸せをこんなに近くで手助けできる仕事って あるんだ!」と、一気に魅了されました。 私には思い描いている理想像があります。それは、新郎新婦さんに親身に寄り添い、 「やりたい!」と思っている式を実現させ、会場全 場全体が笑顔に溢れる結婚 をつくり上げる ことです。人生で最も笑顔 集まる 結婚式。全力でサポートし、自分も周りも すが、そうはいっても簡単なことではありません。 笑顔になれるそんな式 責任は重入力 も失敗 われなくなってしまいます。自分の思い描いている夢を 叶えるにはまず貴校に進学後は「ブライダルファッションプランナー ブライダルファッションプランナー、サービス接遇二級 を取得し、接客の仕方、作法をきちんと学びたいです。将来は式場に務めたいと 思っています。 以上が私の夢です。進学 を実 ために勉学に退すか? なりたいです。 乱にしたいです。 少しで である結婚式が楽しかった 式を台無しにしてしまい、一生の思い村 するため

回答募集中 回答数: 0
数学 高校生

126.1 解説の3行目以降の()は何をしているのですか?

504 00000 基本例題126 互除法の応用問題 (1) 2つの整数m,nの最大公約数と3m+4n, 2m+3n の最大公約数は一致す ることを示せ。 (2) 7 +48 +5 が互いに素になるような 100 以下の自然数n つあるか。 指針 最大公約数が関係した問題では, p.501 基本事項 ① (*)で示した, 右の定理を利用して,数を小さくし ていくと考えやすい。 本問のように,整式が出てくるときは,まず, 2つの 式の関係をa=bg+r の形に表す。 次に, 式の係数や次数を下げる要領で変形していくとよい。 解答 2 数A, B の最大公約数を (A,B) で表す。 口 (1) 3m+4n=(2m+3m) ・1+m+n, 2m+3n=(m+n) ・2+n, m+n=n·1+m よって (3m+4n, 2m+3n)=(2m+3n, m+n) =(m+n, n)=(n, m) したがって,m,nの最大公約数と3m+4n,2m+3nの最 大公約数は一致する。 221 DE 01 ① とおくと 2 は全部でいく p.501 基本事項 ① aとbの最大公約数 a=batr 等しい 3m+4n=a m=3a-4b [別解 2m+3n=b n=36-2a mとnの最大公約数をd, aとbの最大公約数をeとする。 ① より αと6はdで割り切れるから, dはaとbの公約数 である。 ゆえに d≤e ...... e≦d 同様に,②よりはとnの公約数で ③ ④ から d=e よって, 最大公約数は一致する。 (2) 8n+5=(7n+4)·1+n+1, 7n+4=(n+1).7-3 ゆえに (8n+5, 7n+4)=(7n+4, n+1)=(n+1, 3) 7 +4と8+5は互いに素であるとき, n+1と3も互いに 素であるから, n +1と3が互いに素であるようなnの個数 を求めればよい。 R-X10 2≦n+1≦101 の範囲に,3の倍数は33個あるから 求める 自然数は 100-3367 (個) 練習 ③ 126 (1)a,bが互いに素な自然数のとき, 3a+7b 2a+5b とrの最大公約数 差をとって考えてもよい。 3m+4n-(2m+3n) = m+n 2m+3n-(m+n)=m+2n m+2n-(m+n)=n m+n-n=m <m=dm',n=dn', a=ed', b=eb' とする ① は 'd(3m'+4n')=a d(2m'+3n')=b re(3a'-4b')=m e(36'-2a')=n ②は a=bg-r のときも (a, b)=(b, r) が成り立つ。 .501の解説 と同じ要領で証明できる。 は既約分数であることを示せ。 (2) 3n+1と4n+3の最大公約数が5になるような50以下の自然数nは全部で いくつあるか。 Op.514 EX87.88 以下 1 フ r 角 例1 た た x 例2 方 a VE x ア G C Q Ve 3

回答募集中 回答数: 0