学年

教科

質問の種類

数学 高校生

青チャート数Bの統計の分野です。 P(k)までは合ってるっぽいんですけど、以降の計算でΣ[k=1,n-2]kP(k)を、P(n-1)とP(n)は0だと思ったのでΣ[k=1,n]kP(k)にして計算したら間違ってました。おそらく何か勘違いしてるので、どなたか説明してくれませんか。

(2) E(X)-kp-kn(n-1) n(n-1) (nk-k²) = n(n=1) {n • \/ \n (n+1)= | | (n+1)(2n+1)} 2 = n(n-1) = n(n+1)(3n-(2n+1)) n+1 6 3(n-1)(n-1)=n+1 3 また E(X)=R²-k²- 2(n-k) n(n-1) n(n-1) (nΣk²-k³) 2 72° また、に関係しない の式を 前に出す。 =(n+1) -n(n+1)(2n+1) =(-1) { //1n(n+1)(2n+1)-1/13r(n+1)} = 1/2(+1) n(n+1) 6 よって_V(X)=E(X*)-{E(X)n(n+1)_(n+1) (n+1)(n-2) 18 本 (nは3以上の整数) のくじの中に当たりくじとはずれくじがあり、そのうちの ② 66 2本がはずれくじである。このくじを1本ずつ引いていき、2本目のはずれくじを 引いたとき、それまでの当たりくじの本数をXとする。 Xの期待値E(X)と分散 V (X) を求めよ。 ただし, 引いたくじはもとに戻さないものとする。 [類 新潟大 p.519 EX 39.40 出るこ るときであるか [2]Zのとりうる よって、(1)から 二項定理により ゆえに、 Zn個の確率 副題の(2)は,次 knに対し X. 2 Xs........ EC 2以上の自 勝った人の数 (1) ちょうど (2)Xの期待 X-Omer P(x+c) = t h PD U ( n n y ) Ci me Pry=2)= (+ 1-2 A-3) 3 (+ P ht (n-2) -3 n-14 h (例2 (Pf) (=(n-2)/(h= h-1-k (h)! n(h+1) \^<2)! (^^-*) W (m-k)? (+) Ex)=l=k-1 2k+1) =h(n-1) ht 573072. pm. Proof={ \+) (2011) + {ach+i)} = +11 + (2n++ b + 4) h-1 2(n+1)(nt) == n-1. 3(h-1)

回答募集中 回答数: 0
数学 高校生

⑵なんですが、問題の意味も、解説の意味も全然わかりません、教えてほしいです🙇‍♀️

重要 例題 71 定義域によって式が異なる関数 次の関数のグラフをかけ。 (1) y=f(x) (2) y=f(f(x)) 関数f(x) (0≦x≦4) を右のように定義すると (0≦x<2) f(x)= (x)=x 8-2x (2≦x≦4) 123 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2) f(f(x)) f(x)のxf(x) を代入した式で, 0≦f(x) <2のとき 2f(x), 2f(x) 4のとき 8-2f(x) (1) のグラフにおいて, 0 f(x) <2となるxの範囲と, 2≦f(x)≦4となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 3章 2 ⑧関数とグラフ (2f(x) (0≤f(x)<2) 解答 (2) f(f(x))= 8-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき f(f(x))=2f(x)=2.2x=4x 向 f(f(x))=8-2f(x)=8-2.2x =8-4x 1≦x<2のとき 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4 のとき f(f(x))=2f(x)=2(8-2x) =16-4x よって, グラフは図 (2) のようになる。 (1) (2) YA YA 4 2 1 変域ごとにグラフをかく。 (1) のグラフから、f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, 1≦x<2なら f(x)=2x 2≦x≦3なら f(x)=8-2x のように2を境にして 式が異なるため、 (2) は左 その解答のような合計4通 りの場合分けが必要に なってくる。 0 「 「 1 J 1 2 3 4 X 0 1 2 3 4 X (2)のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 右の図で、黒の太線 細線部分が y=f(x), 赤の実線部分が =f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 成関数といい、 (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 YA 8から2倍を 引く 4 2 0 4 x 2倍する

回答募集中 回答数: 0
数学 高校生

途中式も一緒にアからタの求め方を教えてください。 (3)も途中式ありでお願いします!

。 先生と生徒2人 次のア 2 の3人の会話を読み, ア に適する記号または数式を答えよ。 先生: 定期考査お疲れさまでした。 それではI課題いきまし ょう! 問題 a, b, c を実数とし,f(x)=x+ax2+bx+c とする ウ 関数 f(x) は,f(2)=10,f'(2) =13, f(x)dx=6 を満た オ しているとする。 また, k を正の実数とし、 2つの曲線 Cy =f(x) とC2:y=kx2 は異なる3個の共有点をもつとする。 (1) 関数 f(x) を求めよ。 (2)kのとりうる値の範囲を求めよ。 (3)2つの曲線と C2 で囲まれた2つの部分の面積が等し いとき, kの値を求めよ。 先生: 難しい問題ですが頑張っていきましょう。 まず、1つずつ処理していこう! j(2) = 10 から 整理すると キ ケ サ ア a + イ b+ c = ウ ****** ①ができるよ。 次に,f'(2)=13 から 整理すると ス H a+b= オ ②となるね。 また、Sof(x)dx=f(x+ax'+bx+c)dx=6 であるから 整理すると, a + キ b + ク c =3 ③ カ となるので,① ② ③ を解くと, a=4 ,b== ,C= サ より f(x)=シだね。 先生: 正解です。 では (2) も頑張ってみましょう。 (2)kのとりうる値の範囲を求めよ。 シ=kx2とするとス =0 ス =0. ④はx=セを解に もたないから, C と C2 が異なる3個の共有点を もつための条件は④の判別式をDとするとソ となり、求めるkの値の範囲はタ です。 ソ の解答群 (あ) D=0 (V) D÷0 (う)D> 0 (え) D≧0 (お) D< 0 (か) D≦0 ソ 正解です。 では、最後の問題です。 (3)2つの曲線とC2で囲まれた2つの部分の面積が等し いとき, kの値を求めよ。 イ H カ ク コ シ セ タ ~~~以下計算スペース~~~

回答募集中 回答数: 0
英語 高校生

(2)①studying (5)③regards (8)①came to realize (12)②to whom という答えになるのですが、どうしてそうなるか、なぜほかの回答がだめなのか解説お願いします!

1 空所に入る適語を選びなさい。 (1) Jennifer ( ) her own work experience in India. Dspoke for ②told ③talked about ④said ) abroad next year. studying in to study 4to study in (2) It might be wise of you to avoid ( Dstudying (3) He made an effort to become a professional golfer, but he made ( ) progress. ⑪little 2a little ③few ④a few (4) It seemed ( ) for us to finish the task by the next day. Dincapable ②unable (5) Don't forget to give my best ( Dreward @regar regard ③impossible terrible ) to your parents when you go back home. ③regards (6) I( ) money from my friend last week. Dlent ②sent ③rented (7) I was so tired that it was really hard to stay ( ⑪wake ②awake ③woken Drewarding borrowed ) in class. ④waking ((8) After a cup of coffee, I ( ) what his message really meant. Dcame to realize came realizing ④became to realize 3became realizing (9) Mary quarreled with her father a week ago. She is now barely ( ) with him. Don bad conditions Bin familiar relation ②on speaking terms on good feelings ) the dishes after dinner. 4to wash (10) Because my mother was sick in bed, she had me ( wash ②washed ③have washed (11) Fleming's discovery of penicillin, for ( ) he was awarded the Nobel Prize, had a major influence on the lives of people in the 20th century. Dthat ②what ③which whom ) I introduced delicious yakitori. ④whom (12) I stayed one more week with my friends from Italy, ( Qwho ) involved in the accident is my neighbor. Dof whom ②to whom (13) One of the girls ( who was ②whoever were whose were (14) You have to do ( ) you have to do. what ②that ③which ④how ④whomever was

回答募集中 回答数: 0
英語 高校生

英検準一級の要約問題です。 添削していただけないでしょうか?🙇‍♀️

英検公式サンプル問題 ⚫ Instructions: Read the article below and summarize it in your own words as far as possible in English. ⚫ Suggested length: 60-70 words Write your summary in the space provided on your answer sheet. Any writing outside the space will not be graded. From the 1980s to the early 2000s, many national museums in Britain were charging their visitors entrance fees. The newly elected government, however, was supportive of the arts. It introduced a landmark policy to provide financial aid to museums so that they would drop their entrance fees. As a result, entrance to many national museums, including the Natural History Museum, became free of charge. Supporters of the policy said that as it would widen access to national museums, it would have significant benefits. People, regardless of their education or income, would have the opportunity to experience the large collections of artworks in museums and learn about the country's cultural history. Although surveys indicated that visitors to national museums that became free increased by an average of 70 percent after the policy's introduction, critics claimed the policy was not completely successful. This increase, they say, mostly consisted of the same people visiting museums many times. Additionally, some independent museums with entrance fees said the policy negatively affected them. Their visitor numbers decreased because people were visiting national museums to avoid paying fees, causing the independent museums to struggle financially.

回答募集中 回答数: 0