学年

教科

質問の種類

政治・経済 高校生

高校 政治経済 空欄の記入があっているか教えていただきたいです

17 資本主義経済の発展と変容 1 経済活動の意義 1.経済活動…① 財 や②サービス を生産分配・支出する活動 SUPPO ①人間の 形物, →生産活動は,③生産要素(資本・労働・土地)を用いて行われる 社会的分業による生産物を交換する場 2. 4. 市場 3. ⑤ 奇小 →資源は有限で成果としての財・サービスの量にも制約があ 4.経済的選択…ある財を増やすと他の財が減る→(⑥トレードオフの関 係) 経済見 ② 医療・ の移 経済 ③資本 産要 再生 ⑤ 有 活 5. 経済問題への対処法 市場での自由な取り引きに任せる (資本主義) ⑥ 市場経済 VHeave 政府が目標を設定して計画的に管理する (社会主義) 計画経済 2 資本主義経済の発展 1. 土地囲い込み (エンクロージャー)...15 世紀末イギリスで農民が土地を追われた →賃金労働者と⑨ マニュファクチュア 9 (工場制手工業) を経営する資本家 2.11 重尊主義政策...16世紀~絶対主義国家による産業保護と輸出振興 3.資本主義経済... 18世紀後半、イギリスの1 産業革命 により確立 ⑨ マニュファクチュア →機械制工業 (12工場制機械工業) 産業資本主義の成立... 13 自由放任主義(レッセフェール)を採用 4. アダム=スミス・・・ 『諸国民の富(国富論)』, 利己心に基づいて利益を追求しても, 価格が「⑩ 見えざる手 」 となり需要量と供給量を調整

回答募集中 回答数: 0
物理 高校生

解答お願いします

1図のように, 音波をよく反射する高さH の鉛直断崖の下部にトンネルがある。 トンネ ルの手前, 入口からの距離がXの地点をPと する。 一定の速さでトンネルに近づいてき た列車の先頭が, 時刻1=0に地点を通過 した。その瞬間に列車の先頭にある振動数。 の警笛が鳴り始め, 列車の先頭がトンネルに 進入した瞬間に警笛は鳴り終えた。 列車の先頭から距離 Lだけ離れた客車中に 00000 図 H トンネル はA君が,また断崖上の縁にはB君がいる。 A君には振動数がと つの異なる高さの警笛音が届いた。一方, B君には振動数の警笛音が届いた。 以 下の問いに答えよ。 ただし, 音の速さはVである。 また, 列車の高さ, トンネルの大き さ, A君およびB君の背の高さは無視してよい。 (1) A君には警笛音がどのように聞こえたか。 次のア~エの中から正しいものを1つ選 べ。 (ア) まず低い方の振動数の警笛音が聞こえ、 少しして振動数の警笛音が混じ りうなりが聞こえた。 その後、うなりが消えると同時に何も聞こえなくなった。 (イ)まず低い方の振動数の警笛音が聞こえ、 少しして振動数チュの警笛音が混じ りうなりが聞こえた。 その後, まずうなりが消え、振動数の警笛音が少しの間 残ったのちに何も聞こえなくなった。 (ウ)まず高い方の振動数の警笛音が聞こえ、少しして振動数の警笛音が混じ りうなりが聞こえた。 その後、うなりが消えると同時に何も聞こえなくなった。 (エ)まず高い方の振動数の警笛音が聞こえ、 少しして振動数の警笛音が混じ りうなりが聞こえた。 その後, まずうなりが消え, 振動数の警笛音が少しの間 残ったのちに何も聞こえなくなった。 (2) for 14, V を用いて表せ。 fB ア (3) 振動数の警笛音がA君に届いた時刻 A1 A2 を求めよ。 ウ (4) B君に聞こえた警笛音の振動数は時間とと もにどのように変化したか。 2図のア~カの中か ら正しいものを1つ選べ。 In エ 聞こえ カ (5) B君に警笛音が聞こえ始めた時刻 を求めよ。 (6) B君に警笛音が聞こえた時間間隔は警笛が鳴っ 始める時刻 2図 ていた時間間隔よりどれだけ短いか, あるいは長いかを答えよ。 V 聞こえ 終わる時刻 7)断の高さが距離 Xに等しく,列車の速さが 1/10 のとき, B君にはA君の何 倍の時間だけ警笛音が聞こえるか。

回答募集中 回答数: 0
生物 高校生

答えがないので全て解答教えて欲しいです

生物基礎分野 1学期中間試験 【1】 生物と非生物についてモトネ (妹)とユウコ (姉)の会話を読み以下の問に答えよ。 モトネ: 貝殻って、 生物ではないよね。 知 ユウコ: もとは生物だったけど、 今は生物ではないよ。 もし生物なら、 私たちが使っている 木の机だって生物になる。 モトネ:ネコやヒマワリ、シイタケ、エイズウイルス、大腸菌は生物ってことだよね。 ユウコ:エイズウイルスは、今の定義では生物には分類されないよ。中間的な存在だから。 モトネ: なんで? ユウコ:生物には共通した特徴があって、細胞を基本単位として、最外層には①か あり、細胞内と細胞外を隔てているんだよ。 モトネ:エイズウイルスには①がないんだね。 ユウコ : それに、すべての生物には②があり、②には遺伝情報が含まれている。 モトネ:ウイルスには、②がないってこと? ユウコ : アデノウイルスには②があるけど、エイズウイルスやインフルエンザウイルスに はないんだよ。 モトネ: ところで、 植物は光を使って何をつくっているの?。 ユウコ:b 植物は太陽の光エネルギーを用いてc 有機物をつくる。これを光合成という よね。これは簡単な物質から複雑な物質にする ③ という。 モトネ: その反対は? ユウコ:複雑な物質から簡単な物質にしてエネルギーを得ることを④という。呼吸もそ の例だよね モトネ: 植物も呼吸しているよね。 そのエネルギーって何? ユウコ : このエネルギーで合成される物質を⑤という。⑤の構造は、アデノシンに3 つの⑥がつながっている。 この⑥ と ⑥ の結びつきを モトネ:このエネルギーを利用することも生物にとって共通することなの?。 ユウコ: その通りです。 問1 文章中の1から ⑦に適する語を入れよ。 結合という。 問2 下線部 aについて、 1665年にコルクガシの樹皮から採取したものを顕微鏡で観察し、細 胞と名付けた研究者とは誰か、次のア~エから最も適当なものを1つ選び記号で答えよ。 アシュワン イシュライデン ウ フック エフィルヒョー 【2】 問3 下線部bについて、 植物の細胞を構成する物質で2番目に多い物質を次のア~オから 最も適当なものを1つ選び記号で答えよ。 相 ア 炭水化物 イタンパク質 ウ 脂質 水 オ 無機塩類 問4 下線部cについて、 炭素を含むものが有機物である。 次のア~オの中で有機物ではな いものをすべて選び記号で答えよ。 ただし、 ア~オがすべて有機物な場合は「なし」と 答えよ。 アデンプン イ 二酸化炭素 ウ RNA エ免疫グロブリン オ AD -1-

回答募集中 回答数: 0
数学 高校生

(2)の問題が分かりません。教えて下さい。

10 極値をもつ条件 関数A(x)=xについて,次の問いに答えよ. (1) A(x)の増減を調べ, 極値を求めよ. (2) 関数B() がB' (x) =A (z) を満たすとする. a を実数とし,x>0において, 関数 f(x)=B(z) -axが極値をもつとき,aのとりうる値の範囲を求めよ. 問題文のf(x)が極値をもつとき 100k (大阪工大・推薦/改題) f'(x) =0であることのみに注目してはいけない. f'(x) = 0 の解の前後でf'(x) が符号変化しなければ極値をもたない. 極値をもたない条件は,f'(x) が符号変化をおこさない (つねに0以上,またはつねに0以下)こと である. 文字定数を分離してとらえる場合 f'(x) の符号がg(x) -αの符号と同じになるとき,f'(x) の 符号は,曲線y=g(x) と直線y=αの上下関係で判断することができる.y=g(x) がy=aの上側にあ れば常にf'(x)>0, 下側にあれば常にf'(x) <0である。 このように,文字定数 αが分離できれば,定 曲線y=g(x) と, x軸に平行な直線y=αとの上下関係を調べればよいので,とらえやすい。 解答 > (1) A'(x)=2xe-x+xd(-e-x)=x(2-x) e-x A(x)の増減は, 右表のようになる. (x)) +(x)= (x)=Sit I 0 2 4 極大値は A (2)=- 極小値はA(0)=0 e² A'(x) - 0 + 0 = A(x) 7 > V H (2) f'(x)=B'(x)-a=A(z) -a x>0においてf(x) が極値をもつ条件は, である。 f'(x)がx>0で符号変化すること f'() (8-8)579- A(x)-a>o 0 + f(x)。 A(x)-9<0 =(x)7 Acx)>a A(x)<a 常にf'(x)>0⇔ y=A(x) がy=αの上側 常にf'(x) <0⇔y=A(x) がy=aの下側 ① である. (1) の過程, およびx>0のときA(x)>0 とから,y=A(x) のグラフは右図の太線のようにな る。 よって, ①により, 求める範囲は 4 e2 0(x)\il (1) 0<a<- のとき 直線と曲線は 0<x<2で交わり, f'(x)は負か ら正へと変化するので,ここで極 小値をとる. limA(x) =0(左 0<a<4 30 x110 2 x 下の注) であるからx>2でも必 ず交わり ここで極大値をとる. x2 x-00 et 注 lim -=0・・・・・・であるから, limA(x) =0が成り立つ. X11 ※を証明しておこう x = 2s とおくと, x2 ex e2s (es)2=4()² S 1+8% 6の前文を参照. () () は,x>0のとき, S so es であるから, lim -= 0 を示せばよい.e=t とおくと, S log t >1+x+- + -を導いて示 となり, 2 6 es t すこともできる. log x 818 IC 6(2) から lim -=0であるから lim=0である. S S-8 es

回答募集中 回答数: 0