学年

教科

質問の種類

数学 高校生

数Iの連立2元2次方程式の問題です。 (3)で黄色マーカー部分において、なぜ①+②×2という解き方をするのかが分からないので教えてください。(どういう問題でこのような解き方をするのかが分からないです。) また、連立2元2次方程式の問題において(1)-(3)はそれぞれ解き方... 続きを読む

68 例題 90 連立2元2次方程式 次の連立方程式を解け。 fx+y=1 (1) lxy=-6 思考プロセス (3) [x2-5xy=2 |2xy-y² = -1... ② Action » 連立方程式は, 1文字ずつ消去せよ 文字を減らす 連立方程式の基本的な解法の流れ xとyの 連立方程式 x=-2,3 (1) ①より y=1-x ③②に代入すると x-x-6=0 より よって ③に代入すると (2) (3) は, ①,②ともに2次式である。 (2) ①をxについての2次式とみると, 因数分解を 用いて解くことができる。 既知の問題に帰着 (3) ①をx=(yの式) にして②に代入すると, 式は 複雑になる。 「定数項が 0 ならば (2) の因数分解の方法に 帰着できるかもしれない」と考える。 よって (ア) x=-2y... ③ 1文字ずつ消去する x=(yの式)... ・・・・ (*) x=-2のとき x=3のとき したがって y=3, (2)①の左辺を因数分解すると (x+2y)(x-3y) = 0 [x=-2 ③②に代入すると 2-2y-80より ゆえに ③に代入すると y=1-(-2)=3 y=1-3=-2 [x = 3 lv=-2 y=-2,4 y=-2のとき y=4のとき ... 3 x (1-x) = -6 (x-3)(x+2)=0 x=-2y または x=3y [x2-xy-6y2 = 0 lx²-3y²-2y=8 x=-2(-2)=4 x=-2.4=-8 ASRASH (-2y)²-3y^2-2y=8 (x-4)(y+2)=0 だけの方程式 二文 noi10円 ← (*)はxについて解いたま みることができる。 ← ② をy = (xの式)にして 同様。 y を消去し, xだけの 方程式をつくる。 右辺が0である①の が因数分解できること 着目し,xをyの式でま す。(xを消去し,yだけ の2次方程式をつくる (イ) x=3y... ④ のとき ④を②に代入すると (3y)2-3y2-2y=8 6y2-2y-8=0 より (3y-4)(y+1)=0 ゆえに y = -1, ④ に代入すると y = -1 のとき 10 4 3 (ア),(イ)より y= (3) ① + ② ×2より よって のとき- x=-3 [x=-8 (x = 4 ly=-2, lv=4 5 lv=-1, 1 y² 3 ③に代入すると x2-xy-2y2 = 0 (x-2y)(x+y)=0 x = -y または x = 2y 4 3 ゆえに (ア) x=-y... ③ のとき ③②に代入すると より x=3.(-1)=-3 x=3.4.3- /3 3 (3) (ア), (イ)より のとき 4 3 x2-5xy+2(2xy-y) = 0 : 土 x= √3 3 x= 練習 90 次の連立方程式を解け。 fx+y=2 (1) lxy =-1 (2x² - xy = 12 【2xy+y2 = 16 -22-2=-1& 13 3 = + √3 のとき 3 (イ) x = 2y... ④ のとき ④を②に代入すると 4y²-y^2 = -1 3y2 = -1 となり,これを満たす実数yは存在しない。 √3 3 OFERAS TRAD [x = 4 √√3 3 x== y = y = √3 3 (2) 2式の加減により,右辺 の定数が0となるように 変形し, (2) と同様に左辺 の因数分解を考える。 (実数)≧0より Jx2-xy-2y^2=0 √x² + y² = 8 OCT TO p.180 問題

回答募集中 回答数: 0
数学 高校生

青チャートⅡ例題194で質問があります。 ②の式では 2(x -a)Q(x)+(x−a)^2 Q'(x)+p てなってるんですけど 右の黄色いマーカーで引いたとこによると n(ax+b)^n−1(ax+b)'の(ax+b)'に該当するところが見つかりません。 この... 続きを読む

重要 例題34 (x-α)” で割ったときの余り(微分利用) xについての整式f(x) を (x-α)で割ったときの余りを, a, f(a), f'(a) を用 いて表せ。 指針整式の割り算の問題では,次の等式を利用する。 A = B XQ+ R 割られる式割る式余り 解答 f(x) を (x-α) 割ったときの商をQ(x) とし, 余りをpx+q とすると,次の等式が成り立つ。 ! 2次式(x-α)で割ったときの余りは1次式または定数であるから f(x)=(x-a)^Q(x)+px+q [Q(x) は, b, qは定数] 平 が成り立つ。この両辺をxで微分して、商Q(x) が関係する部分の式が =0 となるよう な値を代入すると, 余りが求められる。 f(x)=(x-a)^Q(x)+px+q... ① 1 両辺をxで微分すると \m f'(x)={(x—a)²}'Q(x)+(x− a)²Q'(x) + p (5)-(8)=2(x-a)Q(x)+(x-a)'Q'(x)+p ①,②の両辺にx=a を代入すると, それぞれ f(a)=pa+α ③, f'(a)=p ...... ...... p=f'(a) ...... 4 ② ④ から よって③から したがって、求める余りは xf' (a)+f(a)-af'(a) 人は p.303 参考事項 重要 55 [早稲田大〕 I◄{f(x) g(x)}' q=f(a)-pa=f(a)-af'(a)m) bes-8-8 余りの次数は、割る式の次 数より低い。 1800 = f'(x)g(x)+f(x)g'(x) {(ax+b)"} =n(ax+b)" (ax+b) (p.303 参照。) P1+9の人 PC9を求めてる 305 6章 34 微分係数と導関数 この部分どこ いった

未解決 回答数: 0
数学 高校生

38.1 これでも大丈夫ですか??

68 ! 基本例題 38 2次方程式の解の判別 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 (1) 3x²-5x+3=0 (2) 2x²-(k+2)x+k-1=0 0422 (3) x2+2(k-1)x-k²+4k-3=0 基本事項 O UT GY) TRST T 指針▷2次方程式 ax2+bx+c=0の解の種類は,解を求めなくても、判別式 D の符号だけで 別できる。 * (NET) MAN [1] => 2次方程式の解の判別 D 4 DO異なる2つの実数解 解答 与えられた2次方程式の判別式をDとするとアー (1) D=(-5)²-4・3・3=-11<0 よって異なる2つの虚数解をもつ。 (2) D={-(k+2)}^-4・2(k-1)=k2+4k+4-8(k-1) =k-4k+12=(-2)^+8 ゆえに, すべての実数んについて D>0 よって異なる2つの実数解をもつ。 D<0⇔ 異なる2つの虚数解 (2),(3) 文字係数の2次方程式の場合も,解の種類の判別方針は, (1) と変わらないが, がんの2次式で表され, kの値による場合分けが必要となることがある。 D=0⇔重解 重解はx=- 一D>0」 =2(k²-3k+2)=2(k-1)(k-2) よって, 方程式の解は次のようになる。 D0 すなわちん <1,2<kのとき この店で異なる2つの実数解 D = 0 すなわち k=1,2のとき 重解 D< 0 すなわち 1 <k<2のとき D=R 異なる2つの虚数解 D<0- 0=([+8)+(1+EV)S+S (3) =(k-1)²-1(−k² +4k-3)=2k²-6k+4+?\)\, {ax² +26²x+c=0 l -ac を利用する。 2 練習 ②38 (1) x23x+1=0 LIHAMU ő 2012 (10) 2a+ SIT (A) D>0- (4) x2-(k-3)x+k²+4=0 k (_){(k+2)}" の部分は, (-1)' =1なので、 (+22 と書いてもよい。 SI+E VALE 00000 D 4 α<βのとき =b²-ac ⇔x<a, Bβ<x <α<βのとき 次の2次方程式の解の種類を判別せよ。 ただし, kは定数とする。 (2) 4x²-12x+9= 0 (3) (x-α)(x-B) <0 ⇔a<x<B (S) (5) x²-(k-?)ril k -13x2+12x-?

未解決 回答数: 2
数学 高校生

なんで右辺の最高次の項が2x^nになるのか分かりません!!

364 第6章 微分法 Think 例題 186 関数の決定 の多項式f(x)の最高次の項の係数は1で, (x-1)f'(x)=2f(x) +81 (S-PR (0)\(\\\ がつねに成り立つ。 このとき f(x) を求めよ. (南山大) [考え方 まず、f(x) の最高次の項のみを考える. また、「つねに成り立つ」とは 「恒等式」ということである。 mimi 解答 f(x) は定数関数にならないから, 最高次の項をx" (nは n-1 自然数)とおくと、 f'(x) の最高次の項は, 1 したがって, 与式の左辺の最高次の項は, 右辺の最高次の項は、 2x" 与式は恒等式であるから, ①,②より, nx"=2x" も恒等 式となる. よって, n=2 STARS これより, f(x)は2次式なので, f(x)=x2+ax+b とお くと,f'(x)=2x+a 与式に代入すると (x-1)(2x+a)=2(x2+ax+b) +8 (a+2)x+(a +2b+8)=0 ③がxについての恒等式であるから、 =a+2=0, a +2b +8=0 (公簿) したがって Focus ( RSD a=-2,b=-3 よって, f(x)=x²-2x-3 a=0+0-01-0-8=(0) 88-0+ (S-)-01-(8-)-8=(3- nxn- N nxn ..... 練習 (1) x 多項式f(r) |100 の 3+601-58- +56=0+501- ***** f(x)=a,x"+......+ax+a (a,0)とおくと, f'(x)=na"x"'++αとなる. 定数関数なら (f'(x)=0 より f(x) = -4 となるか これは意に反する 最高次の項の係数に 1 f(x)をn次式と ると,f'(x) は (n-1) 次式 f(x)が次式(n≧1) ⇒f'(x) は (n-1) 次式 f(x) をn次式として, 最高次の項からnの値を決定する ③がつねに成り立っ どんなの値に ついても③が疲 り立つ 注》例題186 において, f(x) が条件を満たす (最高次の項の係数が1の) 定数関数, つまり, f(x)=1のとき, 与式は, (左辺)=(x-1)0=0, (右辺)=2·1+8=10 となり不適よって, f(x) は条件を満たす定数関数にならない. f(x) は定数関数ではないので、 係数比較は必要十分 性をもつ. JCB) (WY WEST また、例題 186 では 「最高次の項の係数は1」 とあるので「x"」 とおいたが、係数がわ Loor からないときは上のように 「a,x"」 とおくとよい. 例

回答募集中 回答数: 0