学年

教科

質問の種類

物理 高校生

Point4の所で上の方で矢印が内側に向いているのに「伸び」と書いているのがしっくりこないのですがどう考えればいいのでしょうか?🧐

(2) 弾性力は, ばねに 「セリフ」 を言わせよ 伸び縮みしたばねが,もとの長さ(自然長) に戻ろうとしてはたらく 力が弾性力だ。 ばねの弾性力の大きさF〔N〕は, ばねの伸び縮みの大きさ x[m] に比 例する。 これをフックの法則という。 F=kxx このときこの比例定数k [N/m] をばね定数とよぶ。 ばね定数とは, ばねを1m伸ばしたり縮めたりするのに要する力だよ。 よって, kが大 きいばねほど硬いばねとなるね。 ここで,問題だ。 次のすべてのばねとおもりは,それぞれ同一のも のとする。 このとき, ばねの伸びが大きいのは次の(A)と(B) のどっち? 0000000 0000000 そして,次に,おもりに注目して力のつり合いを考えると, (A)のおもり kx=mg (B)のおもり(どちらでもよい) kx=mg よって,XA=XBとなるのだ。 よって, (A)と(B)のばねはどちらも同 じ伸びなのだ。 ちょっと引っかけ問題だったかな。 ウーン, それでもやっぱり (B)のほうが両側から引いてい るから,伸びが大きくなるように思えるなあ。 じゃあ、こう考えたらどうだろう。 つまり 「(A) の壁と (B) の左側 のおもりは同じ役目をしているのだ」 と。 (A) の壁のつけ根の力のつ り合いの式は,F=kx=mgとなって, mgと同じ力をばねに与えて いるだろう。 弾性力で大切なのは, ばねを見たら伸び縮みを未知数として仮 定して,そのばねについている物体に関する式を立てて, 仮定した xの値を求めるというやり方なんだ。 (A) (B) う~ん。 (B)のほうが2つのおもりで引かれているから, 2倍の伸びになっているのかなあ~。 一見そう見えるよね。 でもあくまでも基本に忠実に力を書いてごら ん。 それぞれのばねの伸びを A, B と仮定することが大切だよ。 伸びxと仮定 F kx 0000000 (A) 伸びx と仮定 0000000 kx kx Ekxs img mgmg (B) POINT4弾性力 kx 伸びx kx 0000000000 /kx 縮みx ばねには必ず 伸び縮みの 「セリフ」 を書 き込め! kx

解決済み 回答数: 2
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0
物理 高校生

力学の分野なのですが(2)で三角台を動かすので小球には慣性力が左向きに働くと思ったのですが解説では慣性力は考えていませんでした。何故ですか?教えて頂きたいです。

図のように,傾きのなめらかな斜面を持つ三角台を水平面に置く. 台の最高点からんだけ低 い斜面上の点に,大きさが無視できる質量mの小物体を置いて手放した. 以下の問いに答えよ. 重力加速度の大きさを とする. h 物体の運動方程式を 比例定数を単位までつけて (1) 三角台を固定して手放したところ,小物体は斜面に沿ってすべりおりた.このとき,小物 体が斜面から受ける抗力の大きさと, 小物体の加速度を求めよ. (2) はじめの状態に戻してから, 三角台を図の右向きにある一定の加速度で動かしたところ, 小 物体は斜面に対してずれることなく,三角台と一体になって水平面と平行に運動した.この とき,小物体が斜面から受ける抗力の大きさと, 小物体の加速度を求めよ. (3) はじめの状態に戻してから, 三角台に力を加え, 小物体の加速度の水平成分が図の右向き に (2) の2倍になるようにしたところ, 小物体は斜面に対して上方へすべり出した。このと き,小物体が斜面から受ける抗力の大きさと,加速度の鉛直成分の大きさを求めよ. (4) (3) のとき, 水平面に対する小物体の加速度の大きさと, 小物体が斜面の最高点に達するま での時間を求めよ.

解決済み 回答数: 1