学年

教科

質問の種類

数学 高校生

数Cベクトルについての質問です (2)の解説に nベクトルとmベクトルのなす角をθ(0°≦θ≦180°)とすると とありますが、自分で調べたところθの範囲が(0°≦θ≦90°)でなく(0°≦θ≦180°)であるのは鈍角の角度が求まる可能性があるということが分かりました ... 続きを読む

418 1/10 |基本例 35 内積と直線のベクトル方程式, 2直線のなす角 0 M1) 点A(3,-4) を通り, 直線l: 2x-3y+6=0 に平行な直線をg とする。 線gの方程式を求めよ。 2直線2x+y-6=0, x+3y-5=0 のなす鋭角を求めよ。 P.415 指針 直線 @x+y+c=0において, n=(a, b)はその法線ベクトル (直線に なベクトル)である。 (1) 直線lの法線ベクトルはすぐにわかるから,これを利用すると lin, lllggin すなわち, は直線gの法線ベクトルでもある。 (2) 2直線のなす鋭角 2直線の法線ベクトルのなす角を考える。 直線 2x+y-6=0 の法線ベクトル 直線x+3y-5=0 の法線ベクトル = (21) m = (1,3) を利用して,n, mのなす角0 (0°0≦180°) を考える。 (1) 直線l:2x-3y+6=0 の法線ベクトルである (1) YA 解答 n =(2-3) は,直線gの法線ベクトルでもある。 よって、直線g 上の点をP(x, y) とすると n n.AP=0 AP=(x-3, y+4) であるから 2(x-3)-3(y+4)=0 2 -30 31 -4 g すなわち 2x-3y-18=0 ベクトルで角度等 (2) 2直線2x+y-6=0, x+3y-5=0 内積 ↓ の法線ベクトルは, それぞれ ベクトル使う 成分表示のベクトル がないから法桑泉 n=(2, 1), m=(1, 3) m=(1,3) とおける。 直線の方程式における とのなす角を0 33 5 (0°0≦180°) とすると x ||=√2+12=√5, 0 3 5 n=(2,1) yの係数に注目。 とものなす角 cos 0= a ab 鋭角じゃない |m|=√12+32=√10, 全角の角度が n.m=2×1+1×3=5 求まってしまうとき もあるから091よって n.m 5 cos = 1 ゆえに 0=45° nm √5√10 √2 したがって, 2直線のなす鋭角も 45° == AJ 0 検討 法線ベクトルのなす角 (もしなす角を求めよ」 だったら が鈍角のときは2直線の 45or135°が正解) なす鋭角は180°-0

解決済み 回答数: 1
数学 高校生

この問題の④がn=1の時も成り立つとありますが、どこで成り立っているのかが分かりません!誰か解説してくださるとありがたいです、よろしくお願いいたします🙇

B1-40 (58) 第1章 数 列 Think ○見るたり多度 例題 B1.27 いろいろな数列の和 ( 2 ) Sm=1−22+32-4'++ (−1)" を求めよ. 解答) その和を分けて考える必要がある. nが偶数、つまり=2mmは自然数のとき、 wwwwwww wwwwwwwwwwwwwww Sam=1-2+3-4++ (2m-1)-(2m)2 2m III Colu nが奇数、つまり=2m+1のとき =(12−22)+(32-4°)+…+{(2m-1)-(2m)2} 第 m項 S2m+1=1-2°+32-4°++ (2m-1)-(2m)+(2m+1)2 =(12-2)+(3°-4°)+…+{(2m-1)-(2m)2}+(2m+1)2 nが偶数のとき, n=2mmは自然数) とおくと, wwwwwwwwwwwwwww. Sm=S2m=(12−22)+(3-4)+…+{(2m-1)-(2m)2} ={(k-1)-(2k)}=2(-4k+1) k=1 第 (2m+1)項 いう m 第3項 こ①初う例 n=2,4,6 数列 {(2m-1)^- 初項から第 =-4mm(m+1)+m=-m(2m+1) n=2mより,m=in を①に代入して, == S,=-1/2"(n+1) ② __(n+1) での和と考える 和はnで表す っちの方 ○かりやよい wwwwwwwwwww nが奇数のとき,n=2m+1(mは自然数) とおくと, Sw=Szm+1= (12-2) + (3-4) +...・・・ +{(2m+1)-(2m)2}+(2m+1)^ =Szm+(2m+1)=-m(2m+1)+(2m+1)2 (m+1)(2m+1) (3 n=2m+1より,m= (n-1) を③ に代入して, S.=2+1/2)(n-1+1)=1/2m(n+1)……③ ④は n=1のときも成り立つ. よって,②④より, Focus n=3,5,7, n=1 とすると 1/12=1 Sn=(-1)+12 n(n+1) 場合 この形のままでもよ nが偶数の場合と奇数の場合に分けて考える S2m+1=S2m+a2m+1 練習 一般項am=(-1)n(n+1) で定められる数列の和 B1.27 S„=a+a2+α+... + α を求めよ. ***

解決済み 回答数: 1
数学 高校生

この問題、どうして3の n+1乗で割るのですか?

468 基本 例題 36 amt = ban+g” 型の漸化式 考えてみよう 指針 漸化式 an+1=pan+f(n) において, f(n)=g" の場合の解法の手順は a1=3, an+1=2an+3 +1 によって定められる数列{an} の一般項を求めよ。 00000 基本 例題 - f(n)= q an = - ②2] = 0, とおくと burl=0+1/ → CHART 漸化式an+1=pan+α” 両辺を g"+1 で割る ①f(n) に n が含まれないようにするため, 漸化式の両辺を Q7+1で割る。 antp.an+1 g+1 = g gg" a1= 15 = 5 指針 an+ 〔信州大] 基本 34 基本 42 45. ar となり,nが含まれない。 ・bn+1=b+の形に帰着。 1 ②2 p. an+1 an+1=2an+3n+1 の両辺を3n+1で割ると 3n+1 23 83 ar +1 3' 解答 an=bm とおくと 3n bn+1 == 12/20m+1 3 (S+ これを変形すると bn+1-3= // (bn-3) 2 3 また b-3=1-3-33-3-2 Q= よって,数列{b,-3} は初項-2,公比 / の等比数列で an+1=pantq など 既習の漸化式に帰着 させる。 特性方程式 a=1+1から ま > 2an 20-1.9 3+1 C 品 指針の方 an+ 解答 ①と |a=3 と 2n-1 bn-3=-2 ゆえに an 3n 2\n-1 3". 3-21 よって an=3"bn=3.3"-3・2・2n-1(*)=3n+1-3.2 別解 an+1=2an+3+1 の両辺を 2n+1で割ると an+1 an 2n+1 (+ =3.3.2. 2-1 3-1 lan+1=pan+gは、 辺を+1で割る an 2n = b とおくと bn+1=bn+ 3n+1 2 また b1= a1 3 = でも解決できるが、 21 2 差数列型の漸化式の よって, n≧2のとき n_1/3 \k+1 k=12 3 n-1 n1/3 \2 3\k-1 k=1 処理になるので,計算 上の解答と比べ や面倒である。 3 = + 2 =31 2 33-1 n=1のとき 3(2/2)-3-2127 b="から,①はn=1のときも成り立つ。 したがって an=2"bn=3.3"-3・2"=3" + 1-3.2" 注意

解決済み 回答数: 1
数学 高校生

一枚目の問題の解答2の赤線部分と二枚目の解説欄なんですけど、一枚目の問題はKを使ってmを表した後C nにそのまま用いてないのに、二枚目の問題はなぜすぐに用いることができるんですか?

[考え方 例題 B1.6 2つの等差数列に共通な数列 **** 初項4,公差3の等差数列{an} と,初項 200, 公差 5 の等差数列{b} がある. 数列{a} と数列{bm} の共通項を,小さい方から順に並べてでき る数列{cm}の一般項と総和を求めよ。 B1-9 第1章 【解答 1 数列{a} と数列{bm} の正の項を小さい順に並べた数列{d} を書き出すと、数列 {cm} の初項がみつかり、数列{cmの規則性もわかる』 解答 1 解答2 (数列{a} の第l項)=(数列{bm} の第m項)として,自然数 em の関係式を 求め, l m のいずれかを自然数で表す. {a}:4,7,10, 13, 16, 19, 22, 25, 28, 数列{bm} の正の項を小さい順に並べた数列{d} は, {dn}: 5,10,15,20,25,30, よって, 共通項の数列{ch} の初項は10 数列{a} の公差は3, 数列{d} の公差は5であるから, 数列{cm}は3と5の最小公倍数 15 を公差とする等差数 列である. よって, 数列{cm} の一般項は, cn=10+(n-1)×15=15n-5 また, 10≦cm≦200 より, 10≦15η-5≦200 41 したがって, 1≦n- より n=1,2, 3 ..... 13 よって、数列{c} の総和は, 解答 2 =4+(n-1)×3=3n+1 113{2×10+(13-1)×15}=1300 b=200+(n-1)×(-5)=-5n+205 すると, 3ℓ+1=-5m +205 201 an=4+(n-1)・3 =3n+1 b=200+(n-1)・(-5) =-5n+205 b>0 となるnの値は, n≦40 より, 数列{dn} は, d=640=5で,公差は5 {cm} は初項 c1=10 以上, {bm} の初項 200 以下であ る。 S,=1/2n{2a+(n-1)d} 3l-204-5m より 3l-68)=-5m 3と5は互いに素で l m は自然数であるから, m=3k(kは自然数)と表せる. 4≦bm≦200 より したがって, bm=-5×3k+205=205-15k 4205-15k≦200 1 3 -≤k≤- より, k=1, 2, 3, 5 13 67 数列{a} の第ℓ項と数列 {bm} の第項が等しいと する。 mは3の倍数 {cm} は, a1=4 以上, b= 200 以下である. 数列{cm} は, bm=205-15kにん 13, 12, 11, 1 を代入して得られる数列だから, {c}:10, 25, 40, ***, 190 よって, 初項 10, 公差 15, 項数 13の等差数列より, cn=10+(n-1)×15=15n-5 また、数列{cm} の総和は, の総和は1.13(10+190)=1300s.=.. S₁ = ½n (a + b) 2

解決済み 回答数: 1