学年

教科

質問の種類

化学 高校生

2枚目の写真に書かれてる、陰イオンどうしは必ず接するわけではないって陽イオンにも言えることですか?それとも陽イオンは必ず接するのですか?

. 10-8 イオン結晶 [NaCi 型] ココをおさえよう! ポイント: “面” 心立方格子がベースなので,“面”で切る! NaCI型は, CI が面心立方格子状に配置しており、 その間に Naが配置しています。 よって、 面心立方格子について理解していれば簡単です。 単位格子中のNa+, CI-はそれぞれ何個か? CI-が面心立方格子の配置になっているので,単位格子中に4個含まれています。 NaCl は Na+とCI-1:1で結合しているので, Na+も4個含まれています。 • Na+のまわりのCICIのまわりのNa+はそれぞれ何個か? 右ページのようになっているので, 6個に囲まれていることがわかります。 CIの半径 ci- と Na+の半径 Nat, 単位格子の一辺αとの関係は? CI が“面”心立方格子の配置になっているので, “面”で見ます。 すると, Na+とCI が右ページのようにして接していることがわかります。 ここから,a=2rNa++2rci- だとわかります。 ・NaCl の結晶1molの体積は何cmか?とっても NaCl の結晶の密度は何g/cm²か? om 1080 これまで同様に,右ページのような表を作って考えます。 問題文で与えられているものは書き込んで、比の計算から求めましょう。

回答募集中 回答数: 0
数学 高校生

この赤線部の式がどこからきたのかと、青線部でそれぞれの分散を足してる理由がわからないので教えてください🙇‍♀️🙇‍♀️

5章 21 し,標準偏 らばりの 基本事項 は 計算 きいことの 基本 例題 ・・2つのデータを合わせる ある集団はAとBの2つのグループで構成さ 20 グループ 個数 平均値 分散 A 16 24 B 60 12 28 れている。 データを集計したところ,それぞれ のグループの個数, 平均値, 分散は右の表のよ うになった。このとき, 集団全体の平均値と分散を求めよ。 指針 データ X1,X2, ·····, Xの平均値を x, 分散をs.2 とすると, (A) 8x=x-() [立命館大 ] 基本 177 が成り立つ。 公式を利用して,まず, それぞれのデータの2乗の総和を求め、 再度 公式 を適用すれば、集団全体の分散は求められる。 281 この方針で求める際、それぞれのデータの値を文字で表すと考えやすい。 下の解答では, A,Bのデータの値をそれぞれx, x2, X20i, Ja,.., Yao として考えている。 なお、慣れてきたら,データの値を文字などで表さずに、別解のようにして求めてもよい。 解答 分散と標準偏差、相関係数 20×16 +60×12 集団全体の平均値は =13 20+60 集団全体の総和は20×16 +60×12 ともに整数。 またBの変量をyとし, データの値を y1,y2, ......, y6o とする。 5)²} 広い。 -6)2} Aの変量をxとし,データの値を X1,X2, .....,X20 とする。 のデータの平均値をそれぞれx,yとし,分散をそれぞれ sx', sy2 とする。 =x(x)2より, x2 =sx2+(x)' であるから x²+x2+......+X202=20×(24+162)=160×35 sy'=y(v)' より,y=s,' + (y)' であるから y2+y22+....+y6o=60×(28+122)=240×43 1 x²= 20 -X20²) よい。 =5.0625 25.29 よって、集団全体の分散は 1 20+60 集団全体の平均値は13 (x12+x22+. ...... +X202 +y12+y22+・・・・・・ +yso2)-132 160×35 +240×43 131. -169=30 80 なけれ 簡単 別室 集団全体の平均値は 20×16 +60×12 20+60 =13 数 3工場 0 1 2 6 8 13 30 Aのデータの2乗の平均値は 24+ 16°であり,Bのデータの2乗の平均値は28+12%で あるから、集団全体の分散は 20×(24+162) +60×(28+122) 160×35 +240×43 -132= -169=30 80 20+60 練習 12個のデータがある。 そのうちの6個のデータの平均値は4, 標準偏差は3であ 178 残りの6個のデータの平均値は8,標準偏差は5である。 (1) 全体の平均値を求めよ。 (2) 全体の分散を求めよ。 [広島工大 ] Op.292 EX128

回答募集中 回答数: 0
生物 高校生

この問題の考え方を教えてください

次の文章を読み問いに答えよ。 [論述・記述] 単細胞生物である酵母は単相 (n) の核を持ち, 細胞分裂で無性 的に増えるが、ある条件下では有性生殖を行う。 この際生じる複相 (2n) の接合子 は適当な条件下では減数分裂を行い, 単相の胞子を作り再び無性的に増殖する。 野生株の酵母は最少培地で生育するが, X線照射などにより生じた突然変異体に は最少培地では生育できないものがある。 この中にはアルギニンを加えた最少培地 では生育できるものがあり, アルギニン要求株と呼ばれる。 アルギニンを合成する ためには複数の酵素が必要なので,多種類のアルギニン要求株が存在する。 ここに 6種類のアルギニン要求株 (A株, B株, C株,D,E株, F株)がある。このう A,B,C株, D株はそれぞれw, x,y,z 遺伝子に変異を起こしている。 一方, E株とF株はいずれもw, x, y, zのうちの2種類の遺伝子に変異を起こし ている。 これらの株と野生株を用いて,各種の交配実験を行った。 この実験において同一 の株内では接合せず,生じた接合子は直ちに減数分裂を行って胞子を形成した。 ま た生じた胞子は完全培地ではすべて生育した。 右の表は、 各交配実験において生じ た胞子のうち, 最少培地で生育した胞子の割合を示している。(s 最少培地で生 交配した株育した胞子数 割合(%) A株と野生株 B株と野生株 C株と野生株 D㈱と野生株 AとB4 500505050402500 BとCO BとD株 株と株 ED FとA株 0 0 ) (3) F株とC株 が変 と遺伝子(イ) この結果より遺伝子w,x,y,zの位置関係が推測できる。 またE株は遺伝子 異を起こしており, F株は遺伝子(ウ) と遺伝子 () が変異を起こしていると考えられる。 従って,C株 とE株を交配して生じた胞子の (オ) %が最少培地で生育し, D株とF株を交配して生じた胞子の(カ) % が最少培地で生育すると予測できる。 PAS 問1. 遺伝子w, x, y, z の位置関係について簡単に述べよ。 ただし, これらの遺伝子は必ずしも同じ染色 体上に存在するとは限らない。 (18cm 2行のケイ省略) 問2.文中の(~(カ)に適当な記号もしくは数字を入れよ。 問3. 単相の生物は複相の生物に比べ, X線などの照射により突然変異体が生じやすい。 この理由として最 も重要と思われるものを簡単に述べよ。 (18cm 3行のケイ省略) + * TAO p (n) (3

回答募集中 回答数: 0
数学 高校生

この空白がわかる方いらっしゃいましたら教えてほしいです。

太郎さんと花子さんは次の問題について話し合っている。 問題ある2次方程式の2つの解を α, β とする。α+β=4, a2+β2=-10 で あるように2次方程式を1つ定めよ。 以下の空らんを埋め, 太郎さんと花子さんの会話を完成させよ。 太郎: x2の係数が1であるとき, 2数α, βを解とする2次方程式は x2+ コx+ロコー =0であるから, αβ の値がわかればいいんだよね。 花子 : αβ を求めるために, α2+2=-10が利用できそうだね。 太郎: 本当だ。α+ βを2乗するとαβ が現れるから,aβ を a+β,a2+β2 を用い てすと αβ だね。 花子: 数値を代入すると,αβ= だね。 つまり,答えの1つは |=0 だね。 太郎: 他に考え方はないかな。たとえば, α+β=4 から, 実数 p を用いて,求める 2次方程式をx-4x+p=0 としてみたらどうだろう。 花子:解の公式を用いると,この2次方程式の解はx=2士, となるね。 たとえばα=2+ β=2- として,α2+β2=-'v からの値を求めるのはすごく大変だよ。 太郎: 2次方程式の解と係数の関係を用いた最初の解答は,比較的簡単な計算で解け るんだね。 花子 : 求めた2次方程式の解はx=| となることから,解の種類に関わら ず解と係数の関係が成り立つ点も便利だね。 し

回答募集中 回答数: 0