学年

教科

質問の種類

数学 高校生

イの問題で解説のベン図も、"ここがない"の意味も分かりません😭教えてください

●集合の共通部分集ロ (ア)空欄にあてはまる適切な論理式を選択肢より選んで答えよ。 (1) (AUB)N(AUC)=AUD (昭和女子大,一部省略) (2) (ANB)U(ANC)=AN() (3) (A∩BNCnc=nc 選択肢 (a) AUB (c) CUA (b) BUC (d) ANB (e) BNC (f) CNA (g) AUB (h) BUC (j) A∩B (i) CUA (イ 空欄に下の条件 P1 ~ Pa から正しいものをひとつ選んで入れよ。 (k) BNC (1) CNA 明治学院大・文,一部省略) ABと同値な条件は (1) BOAと同値な条件は (2) ABと同値な条件は(3). P1: (A∩B) B P2: (A∩B) A ベン図を描くのが基本 P3: (AUB) A P(A∩B) B 集合の共通部分・和集合・ 補集合をとらえる基本はベン図を描くことであ る。ベン図から,「分配法則」や「ド・モルガンの法則」が成り立つことが分かる。ベン図を描く方法に これらの法則を適宜組み合わせるといった使い方もできるようにしておくとよいだろう。 解答言 (ア) (1)~(3)の左辺が表す集合をベン図に描くと下図のようになる. (1) A (2) A B (3) B A 例えば (1) を図示するには、 AB、 AB. B AUB= CAUC= の共通部分 (n) を図示して、左 図のようになる。 C (1) (AUB) (AUC)=AU (BC) となり,答えは, (e) (2) (A∩B)U(ANT)=AN(BC) となり,答えは, (k) (3) (A∩BNC)n=(A∩B) ∩Cとなり, 答えは, (j) 注 (1) 分配法則 (p.68の① で,右辺 左辺) の式である. (2) (A∩B)U(ANT)=AN(BUT)=AN(BC) (3) (A∩BNC)n=(A∩BUT)C=(A∩BNC)U(TOC) =(A∩BNC) UΦ=ANBNC (イ) P1~P4の条件の左辺を網目部で表すと, 以下のようになる。 P(A∩B)⊃BP2: (A∩B) AP3:(ĀUB) A P(A∩B) B A BA D D B A B A (1)のベン図は, A以外に BNC の部分も含んでいることか ら答えを探す. (2)(3)も同様 ←式変形で解くと左のようになる。 最初の等号は分配法則, 2番目は ドモルガンの法則による. B 網目部⊃右辺となる条件を求め る.例えば, P1 の場合、網目部が Bを含むことになり、太枠部で まれた部分がない (空集合) こと になる. ここがない ACB ⇔AB ⇔AB がない ⇔ACB 以上により,答えは,(1)... P1, (2)... P3, (3) P2 (網目部⊃B) ⇔B=Φ 1 羽 一般に, XCYX(上 図参照)

未解決 回答数: 1
数学 高校生

赤で線引いたところは、なんで4で割ってるんですか

190 基本 例 111 2次不等式の解法 (2) 0000 次の2次不等式を解け。 (2) x2-4x+5>0 (1) x2+2x+1>0 (4) -3x2+8x-6>0 (3) 4x4x2+1 p.187 基本事項~ D=0のとき [a>0] D<0のとき 指針 前ページの例題と同様, 2次関数のグラフをか いて、不等式の解を求める。 グラフと x軸との共 有点の有無は,不等号を等号におき換えた2次方 程式 ax2+bx+c=0の判別式Dの符号, または 平方完成した式から判断できる。 x (1)x2+2x+1=(x+1) であるから, 解答 不等式は (x+1)2>0 よって、 解は 1以外のすべての実数 (1) (2)x2-4x+5=(x-2)2 +1であるから, (2) 不等式は (x-2)^+1>0. よって解はすべての実数 (3) 不等式から 4x2-4x+1≦0 4x2-4x+1=(2x-1)2 であるから, 不等式は (2x-1)≤0 よって, 解はx= 2 (4) 不等式の両辺に-1を掛けて 3x²-8x+6<0 2次方程式 3x28x+6=0の判別式を D Dとすると 1/2=(-4)3・6=-2 + -1 + + kkkk (3) 2 (4) D=0 の場合, 左辺の を基本形に。 x-1,-1<x と答え 「てもよい。 DO の場合, 左辺の を基本形に。 関数 y=x2-4x+5 の値 は すべての実数x y>0 し (1 関数 y=4x²-4x+1の 値は x=1/2のとき y=0 x= +1/2のとき x2の係数は正で,かつD<0 であるから, すべての実数 D<0 から, xに対して3x²-8x+6>0が成り立つ。 よって, 与えられた不等式の解はない 別解 不等式の両辺に-1を掛けて 3x²-8x+6<0 3x²-8x+6=3(x- ->0であるから, 3x²-8x+6<0 を満たす実数x は存在しない。 よって, 与えられた不等式の 解はない 練習 次の2次不等式を解け。 111 (1) x2+4x+4≧0 (2) 2x2+4x+30 (3) -4x2+12x-9≧0 (4)9x2-6x+2>0 y=3x²-8x+6 ① のグラフとx軸は共有 点をもたない。 これと ①のグラフが下に凸で あることから すべての 実数xに対して 3x²-8x+6>0 NG PRIC 内の ラフをかく。 CHART

未解決 回答数: 1