学年

教科

質問の種類

数学 高校生

青色で囲んだ式の意味がわかりません。 教えてください。

例題 158 約数の個数 金 **** -(1) (a,+α2)(b1+b2+bs+ba) (c) +C2+cs) を展開すると、 異なる項は何 個できるか. T(2) 200の約数の個数とその総和を求めよ. また, 約数の中で偶数は何 個あるか. ただし, 約数はすべて正とする。 考え方 (1) (α)+α2)(b,+b2+63+ba) (Ci+C2+C3) たとえば, (a1+a2)(b1+b2+bs+ba) を展開してできる arbī に対して, ai*bi (C1+C2+cs) の展開における項の個数は3個である. (a1+a2)(61+62+by+b4) を展開するとき, ab」 のような項がいくつできるか考 えるとよい。 (2)1か2か22 か 2 × 1か5か52 であるが, (1+2+2+2)(1+5+52) を展開すると 1×1, ②×1,4×1, 8×1, 1×5, ②×54×58×5, 1×25,2×254×25,8×25 がすべて一度ずつ現れる. したがって, 約数の総和は,次のようになる. ( 1+2+4+8)×1+(1+2+4+8)×5+ (1+2+4+8)×25 =(1 + 2 + 4 + 8 ) ( 1 +5 +25) 200=23×52 より 約数が偶数になるのは, 1 以外の 23 の約数を含むときである ら, 2か2か23 を含む約数の個数を求めればよい. 解答 (1) (a1+az)(b1+b2+bs+b4) を展開してできる項 の個数は, 2×4(個) である. a1, a2の2通り b1, b2, b3, b44 また, (a1+a2)(b1+b2+63+64) の1つの項 abi に対して 全長901 aibi(ci+C2+c3) C1, C2 C3の3通り の展開における項の個数は3個である. 01 よって, 求める項の個数は, 2×4×3=24 (個) (2)200を素因数分解すると, 200=23×52 (3+1)×(2+1)=12 積の法則 Focus より、約数の個数は, 12個 また、約数の総和は, 1 2¹ 22 23 1 1-1 2-1 2-1 23.1 (1+2+2+2)(1+5+52)=465 また, 偶数の約数は, 2か22か23 を含むもの だから、 3×(2+1)=9 より, 偶数の約数の個数は, 9個 5' 15'25'25'23.5 52 1.52 21.5 22.5 23.5 偶数になるのは,1以 2°の約数を含むとき 約数の個数は、素因数分解し,積の法則を利用する

未解決 回答数: 1
生物 高校生

(2)でなぜ計算結果が10の9乗個になるかわかりません。途中式を含めて教えてもらえると嬉しいです。

drive.google.com/file/d/1vzbA4r7F9XWSH8WhFm9clD6VrSM_1NvY/view a ☆ 学校 Google Chrome を既定のブラウザに設定して、タスクバーに固定する デフォルトに設定 [24] (1) 4 (2)6×1013 (3) 2×1015個, 多い [解説] (2) 問題文中の条件から, 細胞の比重を1と仮定すると, 細胞1gの体積は1cm3である。 ヒトの細胞の大きさを1辺 が10μmの立方体であると仮定したとき, 1cm3の中に細胞が何個入るかを考えてみよう。 ヒトの細胞の体積は, 103μm3である。 また、 1cm²(104)3μm²=1012μm3 である。 1cm=10mm=10000μm=104μm よって、1cmの中に入る細胞の数は, 1012μm3 =109個となる。 103μm3/個 であるから, よって、 体重 60kg (=60000g) のヒトのからだには, 60000g×109 個/g=6.0×1013個 (60個) の細胞が存在する。 (3) 大腸菌の細胞の大きさを1辺が1μmの立方体であると仮定したとき, 細胞1個の体積はヒトの細胞 (1辺が10μm) の 1000分の1(103分の1) となる。 よって、 同体積で比べると、 大腸菌の細胞の個数は、ヒトの細胞の個数の1000倍にな る。 (2)より, ヒトの細胞1gの中には, 細胞が 109 個存在しているので, 1gの中に存在する大腸菌の細胞の個数は, 109× 1000=1012個となる。 大腸菌がヒトの腸の中に2kg (=2000g) 存在すると仮定すると, 大腸菌の細胞の総数は, 13:50 ガソリン175円上限に補... ここに入力して検索 × A 2025/06/21 *F7 Prt Scn F8 Home F9 End F10 PgUp F11 PgDr DII F6 F5 F4 F3 F2 を =

回答募集中 回答数: 0
数学 高校生

緑色で丸で囲っているところについて。なぜ1≦3分の4aとなっているのにx=3分の4aはダメなんですか?

355 64 基本 例題 223 係数に文字を含む3次関数の最大・最小 00000 すなわち [2] YA [2] [2] は区間に極大値をと a³ α を正の定数とする。 3次関数f(x)=x-2ax2+αx0≦x≦1 における最大 立命館大 ] 基本 219 重要 224 4 るxの値を含み, 極大値 が最大値となる場合。 で最大となり 0 a 1 a 3 値 M (α) を求めよ。 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で, 極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると, y=f(x) のグラフは右図のよう ya になる (原点を通る)。 ここで,x= =/1/3以外にf(x)=f(10/28) ( 0 よって、1/3 α (1/3<α) が区間 0≦x≦1に含まれるかどうか a a 3 で場合分けを行う。 満たすx (これをαとする) があることに注意が必要。 <a a f(x)はx=/10/ M(a)(0) 4 [3] 0< <1/3a<1 すなわち 0<a<212 のとき, f(x)はx=1で最大となり M(a)=f(1) 以上から f'(x)=3x²-4ax+α2=(3x-a)(x-a) 解答 f'(x)=0とすると x= a 3. a まずは、f'(x)=0を満た すxの値を調べ, 増減表 をかく。 a>0であるから, f(x) の増減表は次のようになる。 <a>0 から a x a ... 3 0<<a f'(x) + 0 0 +1 (0)\-(E)\ 0<a<12/13<a のとき [3] 最大! a2-2a+1 a jal [3] は区間に極大値をと るxの値を含むが、 区間 この右端の方が極大値より も大きな値をとり, 区間 の右端で最大となる場合。 10 a a 4 3 M(α)=f(1)=α-2a+1 24≦3のとき M(a)= このとき 大阪 <f(1)=13-2a・12+α2.1 =a²-2a+1 f(x) 極大 (0) ここで,f(x)=x(x2-2ax+α²)=x(x-α)からもう (*) 曲線y=f(x) と直線 x= (3)=(-a)=7a³ 4 a³, f(a)=0 OL-13+TS =1/3以外にf(x) = 27 を満たすxの値を求めると, 3次関数の対称性の利用 目 4 検討 p.344 の参考事項で紹介した性質, 3 を用いて,f(x)=2742 を満たすx= 1/3以外のx の値を調べることもできる。 2つの極値をとる点を結ぶ線分の中点(つまり,変曲点) の y=f(x) x 座標は x=- -2a 2 3.1 3 点において接するから, f(x)/(x) 4 f(x)= =270から (1 x³-2ax²+a²x-7a³=0 4 で割り切れる。このこと を利用して因数分解する とよい。 S ゆえに (x-1)(x-1/4)-10-19 1102a a a 15 3 x= であるから X= 15 4 1 0 よって, f(x) 0≦x≦1における最大値 M (α) は,次のよ うになる。 01 9 a 4 3 4 a [1] 1<1/3 すなわち 4>3のとき 1 0 3 f(x) はx=1で最大となり M(a)=f(1) <指針_ a2-2a+1 -最大 ★ の方針。 [1] は区間に極値をとる xの値を含まず 区間の 右端で最大となる場合。 0 a a x 3 a 3 2 で, a+ から、 3 11/24)となる。 なお, p.344 で紹介した性質を用いる方法は,検算で使う程度 としておきたい。 で 0.0 6章 6 最大値・最小値、方程式・不等式 ことしないよ 練習 x3 0223 は正の定数とする。 関数f(x)=- x²+ 3 ax²- ピー2ax+αの区間 0≦x≦2におけ 3 p.368 EX142 る最小値 m (a) を求めよ。

未解決 回答数: 1
生物 高校生

(2)(3)の単位変換の仕方、考え方がわからないです

知識 46 いろいろな生物のDNAについて, 次の問いに答えよ。 表1はDNAを構成する4種類の塩基の数の割合を測定した結果である。また,表 2はコイ, ニワトリ, ウシの細胞1個当たりのDNA量を測定した結果である。 表1 DNA を構成する塩基数の割合(%) A 表2 細胞1個当たりのDNA量 〔ピコグラム(10-12g)] T G C コイ ニワトリ ウシ トリ結核菌 15.5 14.3 36.4 33.8 肝臓 3.3 2.66 7.05 大腸菌 24.7 23.6 26.0 25.7 すい臓 2.61 7.15 コムギ 27.4 27.1 22.7 22.8 腎臓 2.28 5.90 サケ 29.7 29.1 20.8 20.4 赤血球 3.5 2.58 = ヒト 30.9 29.4 19.9 19.8 精子 1.6 1.25 3.42 (1) 表1の結果から考えられることを説明文 A~Dの中から選び、 適切な説明文の組 み合わせを、次の(ア)~(カ)の中から1つ選べ。 A 生物種が異なってもおおむね A:T = 1:1,G:C = 1:1である。 B 生物種が異なるとAとT,GとCの比はそれぞれ異なる。 C DNA分子は1本の鎖の中でAとT, GとCが隣りあって結合している。 ne) D 生物種が異なるとDNAに含まれる塩基の構成比は異なる。 (ア) A, B (イ) AC (ウ) AD (エ) B,C (オ) B, D(カ) C,D 4 (2) ヒトの体細胞のDNAをつなぎ合わせるとその直線距離はおよそ2mになるとい われている。 染色体1本当たりのDNAの平均の長さとして最も適切なものを次 (ア)~(カ)の中から1つ選べ。 (ア) 4.3μm (イ) 8.7 μm (ウ) 4.3mm (エ) 8.7mm (オ) 4.3cm (カ) 8.7cm (3) 二重らせん構造をもつDNAはヌクレオチド10対で1回転し、 1回転したときの DNAの長さは3.4 × 10mである。 ヒトの体細胞1個当たりのヌクレオチドは およそ何個あると考えられるか。 最も適切なものを次の(ア)~(オ)の中から1つ選べ。 (ア)4.0 × 10°(イ) 7.2 × 10° (ウ) 1.2 × 101 (エ) 2.4 × 1012 (オ) 6.0×1023 (4) 表2の結果から考えられることを説明文 A~Dの中から選び、 適切な説明文の組 み合わせを,次の(ア)~(カ)の中から1つ選べ。 A DNA量は動物種が異なっても組織や器官において差がない。 B 同じ動物であれば組織や器官が異なっても体細胞中のDNA量はほぼ同じである。 C DNA量が多ければ染色体の本数が多いと考えられる。 N D 精子は減数分裂を経てできるため, DNA量は体細胞の1/2になる。 (ア) A, B (イ) A, C (ウ)A,D (エ) B, C (オ) B, D (カ) CD (5) あるDNAでは4種類の塩基のうちAが23%を占め, またこのDNAを構成する 2本鎖(H鎖とL鎖)のうち, H鎖だけで見ると4種類の塩基のうちAは40%, C [ 東京農大 改] は15%であった。 H鎖におけるTとGの割合を求めよ。

回答募集中 回答数: 0