学年

教科

質問の種類

物理 高校生

414と同じ解き方で415を解いたら単位が合いませんでした、単位の合う計算式をください

202 章 波動 屈折率n, 厚さdの透明な平板がある。 真空中 413. 光学距離 で波長の光が、この平板に垂直に入射して透過するとき,平板 の厚さに相当する光学距離を求めよ。 また, 真空中の光速をcと して,平板中を光が進む時間を光学距離から求めよ。 (3) 点0付近は, 明線と暗線のどちらになるか。 (4) 明線の間隔を, 1, 入, D を用いて表せ。 ↓↓ 414. くさび形空気層の干渉図のように2枚の平 らなガラス板A,Bを重ね, 接点Oから距離はなれ た位置に、厚さの薄い物体をはさむ。 上から波長入 の光をあてると、明暗の干渉縞が観察された。 点Oか ら距離xはなれた点Pにおける空気層の厚さをdとし て、次の各問に答えよ。 0 (1) m=0,1,2,…とし,反射光が強めあう条件式を, m, d, 入を用いて表せ。 (2) dを,x, l, D を用いて表せ。 光 屈折率 n A x 415. くさび形空気層の干渉 図のように, 長さ 0.20 mの平らなガラス板2枚の間に, 厚さ 0.030mm の紙 をはさみ, 薄いくさび形をつくる。 これに上から単色 光をあてると,明暗の干渉縞が観察された。 次の各問 に答え (1) 単色光の波長が4.8×10mのとき, 明線の間隔はいくらか。 (2) (1)と同じ光を用いて, 2枚のガラス板の間を屈折率1.3の液体で満たすと,明線 の間隔はいくらになるか。ただし, ガラスの屈折率は1.3よりも大きいとする。 ↓ ↓ 0.20 m- 416. ニュートンリング 図のように、平面ガラスの上に,光 曲率半径Rの平凸レンズを凸面を下にして置く。 上から 波長の単色光をあてると, レンズ下面とガラス上面で反 射する光が干渉して, 明暗の環が観察された。 (1) レンズの中心Cから距離はなれた点Bにおいて 空気層の厚さがdであったとする。 d を, R, r を用い て表せ。 ただし, R≫d とする。 (2) m=0,1,2,…として,反射光が強めあう条件式と,弱めあう! (3) 点Oから見ると, レンズの中心は間 ↓光 R D d 0.030mm A d B

回答募集中 回答数: 0
数学 高校生

丸で囲った3ってなぜくるのですか? またどこの3ですか?

132 をx 意。 さみうちの原理 [3x] (2) lim(3*+5x) / 「次の極限値を求めよ。 ただし, [x]はxを超えない最大の整数を表す。 > 極限が直接求めにくい場合は、はさみうちの原理 (p.21852) の利用を考える。 x (1) n≦x<n+1 (nは整数)のとき [x]=n すなわち []≦x<[x]+1 よって [3x]≧3x<[3x]+1 3< a lim 100 このとき X→∞ よって X→∞ (ただしlim f(x)=limg(x)) となるf(x), g(x) を作り出す。 なお、記号[]はガウ みうちの原理を利用する。 (2) スが最大の項でくくり出すと (359(20) +1-1(20) +12 (2) の極限と ² { ( ²³ ) * + 1} ²³ の極限を同時に考えていくのは複雑である。 そこで、 はさ CHART 求めにくい極限 不等式利用ではさみうち [3x] x 答 | | 不等式 [3x]≧3x<[3x] +1が成り立つ。x>0のとき,各辺 | [3x] 1 をxで割ると ¥3 x x 1 [3x] +1 から 3 [3x] x この式を利用してf(x) [3x]≧ g(x)/ x X10 x→∞であるから x> 1 すなわち0< − <1と考えてよい。 はさみからのすからどう lim X→∞ .. X>1>0 [3x] =3であるから 2 (3¹+5³) * = [5*{( ³ )* +1}} * = 5{(³)*+1}* *th5_1<{( ³ )* +1} * < ( ³ ) ** +1 lim p.218 基本事項 5. 基本105 ここで, 3-1 [3x] x =3 +11であるからパー =1 lim(3+5)* - lim 5{()*+1}*-5-1 =5.1=5 はさみうちの原理 f(x)=(x)=g(x) で limf(x)=limg(x)=α x→∞であるから,x>10<<1と考えてよい。 x {( ²³ ) * + ¹}* < { ( ³ ) * + ¹} * < { ( ³ ) *+1}...(*) <A>1028, a<b2518 A°A°である。 x-00 ならば limh(x)=α などわかんなのが 225 [I][2A] 次の極限値を求めよ。ただし、[ ]はガウス記号を表す。 [(²³)*+ ( ²³ ) } * 底が最大の項5*でくくり 出す。 /31 * " + 1>1 であるから, (*)が成り立つ。 4章 16 関数の極限 (p.231 EX100

回答募集中 回答数: 0
数学 高校生

74.2 これでも大丈夫ですよね??

分する。 よ。 を する。 (X₂, 3) の座標は の平均 ばよい。 < 1 7 平行四辺形の頂点の座標 基本例題 74 (1) A(7, 3), B(-1, 5),C(5, 1), D を頂点とする平行四辺形ABCD の頂点D の座標を求めよ。 (2)3点A(1,2), B (5, 4), C (3, 6) を頂点とする平行四辺形の残りの頂点D の座標を求めよ。 指針 平行四辺形の対角線は、互いに他を2等分するから, 2本の対角線の中点が一致する。 このことを利用して,点Dの座標を求める。・・・・・・・・・・ (普通、平行四辺形ABCD というように,頂点の順序が与えられているときは,Dの位 置は1通りに決まる。 (2) (1)異なり、頂点の順序が示されていないから, 平行四辺形ABCD と決めつけては いけない。 ABCD, ABDC, ADBCの3つの場合を考える。 解答 頂点Dの座標を(x,y) とする。 (1) 対角線AC, BD の中点をそれぞれ M, N とすると M(715, 3+¹), N(−1+x 5+y) 2 点Mは点N と一致するから -1+x 4 12 2 22 5+y 2 よって x=13, y=-1 ゆえに D(13, -1) (2) 平行四辺形の頂点の順序は,次の3つの場合がある。 [1] ABCD [2] ABDC [3] ADBC [1] の場合,対角線は AC, BD であり,それぞれの中点を M, N とすると M(1+3, 2+6), N(5+x 4+v) 2 以上から、点Dの座標は 4 2 _5+x 2 8 4+y 2 2 M, Nの座標が一致するから これを解いて x=-1, y=4 [2] の場合,対角線は AD, BCであり,同様にして 1+x=22₁ ²2 8 2+y_10 2 よって x=7, y=8 [3] の場合,対角線は AB, CD であり,同様にして 6 3+x 6 6+y 2 22 2 よって x = 3, y=0 (-1, 4), (7, 8), (3, 0) B. p.113 基本事項 ④4 0 M(N) C C A AL DM B D x D' (検討) 上の図で, 線分 AD', BD, CD" の交点は △DD'D" の重 心であり, △ABC の重心で もある。 練習 3点A(3, 2), B(4, 1), C (1, 5) を頂点とする平行四辺形の残りの頂点Dの座 ② 74 標を求めよ。 119 3章 12 直線上の点 平面上の点

回答募集中 回答数: 0
数学 高校生

112.2 記述これでも大丈夫ですか?

480 00000 基本例題112 互いに素に関する証明問題 (1) (1) nは自然数とする。n+3は6の倍数であり,n+1は8の倍数であるとき, n+9 は 24の倍数であることを証明せよ。 (2) 任意の自然数nに対して,連続する2つの自然数nとn+1は互いに素であ ることを証明せよ。 ATUNATI p.476 基本事項 ② 基本 111 重要 114 CFS CITAT 指針 (1) 次のことを利用して証明する。 a, b, kは整数とするとき a,bは互いに素で, ak が6の倍数であるならば,hは6の倍数である。 TRAXE SHES OU MOC! (2) 1 +1は互いに素⇔nとn+1の最大公約数は nとn+1の最大公約数をg とすると n=ga, n+1=gb (a,b は互いに素) この2つの式からnを消去してg=1 を導き出す。 ポイントは 【CHART A,Bが自然数のとき, AB=1 ならば A=B=1 求める。(間 解答 (1) n+3=6k,n+1=81 (k, lは自然数)と表される。 n+9=(n+3)+6=6k+6=6(+1) n+9=(n+1)+8=81+8=8(1+1)+ M=5A JES RAJS a,bは 11 ak = bl ならばんは6の倍数, 1はαの倍数 互いに素 ②2 aとbの最大公約数は 1 <<549° よって 6(k+1)=8(+1) すなわち 3(k+1)=(2+1) 3と4は互いに素であるから,k+1は4の倍数である。このとき,l+1は3の倍数 したがって,k+1=4m (mは自然数) と表される。 である。 したがって, ゆえに n+9=6(k+1)=6.4m=24m +1=3m と表されるから, したがって, n +9 は 24の倍数である。 n+9=8.3m=24m (2) nとn+1の最大公約数をg とすると n=ga, n+1=gb (a,bは互いに素である自然数 と表される。 n = ga をn+1=gb に代入すると ga+1=gb すなわち g ( 6-α) = 1 g,a,bは自然数で,n<n+1より6-a>0であるから g g=1 (1) としてもよい。 KBT BOE-S) IS = よって, nとn+1の最大公約数は1であるから, nとn+1 (ST 8 は互いに素である。 )=(62. 注意 (2) の内容に関連した内容を,次ページの参考で扱っている。 BOSTOYEVS nは自然数とする。 n +5は7の倍数であり、 Ad>D An=ga, n+1=gb 積が1となる自然数は1だ けである。 08 S (()(A) n+7は5の倍数であるとき、

回答募集中 回答数: 0
数学 高校生

お願いします

第4問 # (1) 1.2.3,4,5,6,7,8のとき17で割ったりは表1のように "² #³² & 17 (選択問題) (20) 17割ったときの余りについて考える。 となることがわかる。 I 1 4 9 4 =9のとき、9-17-8 であるから 9¹-(17-8) 17-2×17×8+8? -17 (17-2x8)+8¹ 3 4 16 9 0)² = (12-1² 15 表1 したがって 9 17で割った余りはアイ 同様に考えると、 356" を17で割った余りは 16 25 8 である。 2 7 8 64 49 15 13 16 225 are 24 324356 ウ である。 (数学Ⅰ・数学A第4問は次ページに。) 数学Ⅰ・数学A (2) 171+1=①を満たす自然数の組について考えてみよう。 ① 変形すると 171-²-1 (+1) (-1) となり、 17 は素数であるから、+1または-117の倍数である。 +1が17の倍数であるとき、自然を用いて n+1=17p 17p-1 と表される。 ⑦のように表される月のうち、15 100 の範囲にある最大のものは エオである。 また、1が17の倍数であるときも含めると、①を満たす自然数の組で、 IS100 を満たすものは全部でカキある。 (3) 17m +1・・・・・・③ を満たす自然数の組について考えてみよう。 を変形すると 17m-n¹-1 - (n²+1) (n²-1) となり、 17 は素数であるから、 +1 またはパー1 が 17の倍数である。 +117の倍数となるのは、が、 17 で割ると 余る数または ケコ 余る数のときである。 また、w-117の倍数であるときも含めると、を満たす自然数nの組 で, 15 100 を満たすものは全部で サシあり、このうち最大のは スセである。また、 〃が最小となるときのの値はソタである。

回答募集中 回答数: 0
数学 高校生

なぜ4と13が答えになるのですか??

数学Ⅰ・数学A 第3問 第5問は、いずれか2問を選択し、 解答しなさい。 第 4 問 (選択問題) (配点20) (1) 1,2,3,4,5,6,7,8のとき、17で割った余りは表1のように なる。 M² OY. #² & 17 割った余り 17 で割ったときの余りについて考える。 「 1 4 2 [4] 月9のとき、917-8 であるから 9 (17-8) -172-2×17×8+8² -17 (17-2x8)+8 9 同様に考えると、356 17 で割った余りは 表1 4 16 16 となることがわかる。 したがって 9 17 で割った余りはアイ である。 5 25 8 6 36 2 である。 15 64 13 225 256 +34 (数学Ⅰ・数学A 第4問は次ページに続く。) 数学Ⅰ・数学A (2) 17/+1を満たす自然数の組について考えてみよう。 ①を変形すると 171-²-1 -(n+1)(x-1) となり、 17 は素数であるから、+1または117の倍数である。 +1が17の倍数であるとき を用いて n+1-17p 17p-1 と表される。 ②のように表されるのうち、15 100 の範囲にある最大のものは エオである。 また、n-1が17の倍数であるときも含めると、①を満たす自然数の組で、 IS100 を満たすものは全部で カキある。 (3) 17+1=③ を満たす自然数の組について考えてみよう。 を変形すると 17m-x³-1 - (x²+1) (x²-1) となり、 17 は素数であるから、 +1または-117の倍数である。 +117の倍数となるのは、が、17で割ると 余る数または ケコ 余る数のときである。 また、パー1が17の倍数であるときも含めると、③を満たす自然数の組 で 15100 を満たすものは全部で サシ あり、このうち最大のは スセである。また,"が最小となるときのの値はソタである。 写真を使用 再撮影

回答募集中 回答数: 0