学年

教科

質問の種類

英語 高校生

やじるし部分のこたえを教えてほしいです

New Words ☐ canned [kænd] ☐ feed [fi:d] newsletter [n(jú:zlètǝr] specially [spéfǝli] emergency [imardzǝnsi] freshly [fréfli] ☐ originate [aridzanéit] baker [beikar ☐ victim [viktim] Odistribute [distribju:t] depressing [diprésiŋ] You are reading a newsletter article about canned bread. Canned Bread to Feed the rid Have you ever heard of canned bread? This specially pa bread is designed as emergency food. When you open the can tastes as delicious as freshly baked bread. The idea of canned bread originated in the Great Hans Awaji Earthquake of 1995. Immediately after the earthqua a baker named Akimoto Yoshihiko baked 2,000 rolls and s them to the victims. A few days later, he got bad news. Half the rolls went bad before they could be distributed to people need. Therefore, they were thrown away. Akimoto G1 disappointed to hear that. G1 G1 A little while later, one of the earthquake victims said to hi "It was so depressing to have only hard biscuits to eat. I'd like to create bread that keeps for a long time but stays saf G1 Akimoto decided to rise to the challenge. 72 1. What did Mr. Akimoto do immediately after the earthquake? 2. What happened to the rolls that Mr. Akimoto sent? 3. What did Mr. Akimoto decide to create? Opinion 1. Have you ever eaten canned bread? If you have, how did it taste? If you haven't, what do you think it tastes like? go bad ex. The milk will go bad if you don't put it in the fridge. rise to the challenge ex. Our team rose to the challenge and won the tournament.

解決済み 回答数: 1
数学 高校生

(ア)の問題文を読んで書いた図が3枚目です。 なんで解答と違うんでしょう… また、cosは1が最大だからという3枚目の解き方のどこが違うのか教えてください🙇‍♀️ ちなみに(イ)は3枚目みたいな私の解き方で 図も答えもあっていました!

9 三角関数/合成 f(0) =2cos0-3sin (0≦≦T) の最大値は であり,最小値は (イ) f(0)=3sin20-2sincos+cos20 (0/2)は0で最大値 0で最小値をとる. COS で合成 acos+bsin••••••ア を cos で合成してみよう. P(a, b) とし, OP がx軸の正方向となす角 (左回りを正とする)をαとお くアをOP の長さ2+62 でくくることで,次のように変形できる. である. (日大文理・理系) YA P(a,b) b をとり, (星薬大) a b acos+bsin0=√a2+62 cos +sin 0. √√√a²+b² √a²+b² shQ =√2+62 (cosocosa+sinUsinα)=√a2+62cos(O-α) sin で合成 asin+bcoso (ア と cos, sin が入れ替わっていることに注 意)を,図のα を用いて sin で合成すると,次のようになる. a b asin+bcos0=√a2+62 sin 0. +cos ・ √2+62 ✓a2+62 =√a2+b2sin (0+α) a a 0 I a cosa= √a2+62 b sin a= Va²+62 =√a2+62 (sincosa + cossina) どちらで合成するか 最大・最小を求める問題で, 変域に制限があるとき,上のαが有名角でなけ れば, sin よりも cos で合成した方がどこで最大・最小になるかが分かり易いだろう. 1-cos2r sin x, COSの2次式 sin2x x= 2 cos2r= 1+cos2r 2 sin 2.x sinrcosr= を用いて, 2

解決済み 回答数: 1
数学 高校生

三角関数 解説の下から3行目、tan2θ=〜の式変形が分かりません 教えてください! 青チャート 数ⅱ 例題168

重要 例題 168 図形への応用 (2) 000 点Pは円x+y2=4上の第1象限を動く点であり,点Qは円x+y=16 上の第 る。また、点Pからx軸に垂線PHを下ろし, 点Qからx軸に垂線QK を下ろ 象を動く点である。 ただし, 原点0に対して,常に ∠POQ=90° であるとす す。更に∠POH = 0 とする。 このとき, △QKHの面積Sはtanのと 指針 最大値をとる。 [類 早稲田大 ] 重要 165 △QKH の面積を求めるには, 辺KH QK の長さがわかればよい。 そのためには,点 Pと点Qの座標を式に表すことがポイント。 半径rの円x+y=y2上の点A(x, y) は,x=rcosa, y=rsina (a は動径 OA の 表す角)とおけることと,∠POQ=90°より,∠QOH=∠POH+90°であることに着目。 10P=2, ∠POH=0であるから, Pの座標は (2 cos 0, 2 sinė) 0Q=4,∠QOH=0+90° であるから,Qの座標は (4cos(+90°), 4sin (0+90°)) すなわち (4sin 0, 4cos0 ) ただし 0°<0 <90° ゆえに 512KHQK=1/2(2cos0+4sind).Acos0 =2(2cos20+4sin Acos 0 ) YA 4 2 P -4 K 0 H2 x =2(1+cos20+2sin20)=2{v5sin(20+α) +1}| 三角関数の合成。 ただし, は sina= 1 2 COS α= √5 √5 E 0° <α <90° を満 αは具体的な角として表 すことはできない。 またす。 0°<<90°から (0°<) α <20+α<180°+α (<270°) よって,Sは20+α=90°のとき最大値(5+1)をとる。 20+α=90°のとき tan20=tan(90°-α)= 1 COS a sinq= COS α = =2 tan a sin a ゆえに 2 tan 1-tan20 =2 よって tan20+tan0-1=0 tanについての2次方 程式とみてく。 <<90° より tan 0 0 であるから tan0= 1+√5 2

解決済み 回答数: 1