学年

教科

質問の種類

化学 高校生

(4) 水が増加している分は足さなくて大丈夫なんですか?

[A]xt[s]の SC=A'sと判 る。 中では、次の変 っている。 →HCIO+HC C/mol である。 304.電池と電気分解 解答 (1) 電極A PbO2+4H++ SO² +2e- 電極D:2CI Cl2+2e- → PbSO +2H2O (2) 増加する。 +0.48g (3) 9.7×10秒 (4) 減少する, -0.80g 電極Cに銅が析出したので, 電極Cでは次の変化がおこっている。 とDは、塩化銅(Ⅱ) CuCl2 水溶液の電解槽の陽極または陰極である。 解説 (1) 電極AとBは鉛蓄電池の正極または負極であり、 電極C 電極C:Cu2+ +2e- Cu したがって、電極Cは陰極であることがわかり, 電極Dは陽極である。 電池の正極が接続された電極が陽極, 負極が接続された電極が陰極なの で、電極Aが鉛蓄電池の正極, 電極Bが負極となる。 電極A~Dの各変化は,次のように表される。 A: 正極 PbO2+4H++SO2 +2e B:負極 Pb+ SO- C: 陰極 Cu2++2e- D : 陽極2CI→ Cl2+2 PbSO4+2H2O ... PbSO4+2e- Cu ⑧HO (2) 電極Cに銅Cu (モル質量 64g/mol) が0.32g析出したので,この とき電解槽に流れた電子の物質量[mol] は,③式から,次のようになる。 0.32gx2=0.010mol 64 g/mol ②式から、鉛蓄電池の放電によって, 電極 B の Pb が PbSO4 に変化する ため、2molの電子が流れると,その質量はSO4 (モル質量 96g/mol)の 1mol に相当する 96g 増加する。 したがって, 0.010mol の電子が流れた とき、電極Bの質量の増加分は,次のように求められる。 96 g -×0.010mol=0.48g 2 mol (3) 電気分解で流れた電子は 0.010mol なので, その電気量は, ファラ デー定数から, 9.65×104C/mol×0.010mol=9.65×10°Cである。 流れ た電流が 0.10A なので、 電気分解を行った時間を f[s] とすると, 9.65×102C=0.10Axt[s] t=9.65×10s (4)鉛蓄電池の放電の前後で,電極 A,Bの質量変化から,溶液の質量 変化を考える。 (2) から, 放電の前後で電極 Bの質量は0.48g増加する。 また、①式から,放電によって、電極 A の PbO 2 が PbSO』に変化するた め, 2molの電子が流れると,その質量はSO2 (モル質量 64g/mol)の 1molに相当する64g増加する。 したがって, 0.010molの電子が流れた とき、電極Aの質量の増加分は,次のように求められる。 64g 2 mol -×0.010mol=0.32g 放電後の鉛蓄電池の両極の質量増加分は0.48g+0.32g = 0.80g となる ので 希硫酸の質量変化は0.80gの減少となる。 ① ① ② 式で生じた PbSO はそのまま電 に付着するため、 極板の 質量はいずれも増加する ②極板の質量増加分 液の質量減少分に相 る。

未解決 回答数: 0
数学 高校生

2枚目のセソタチの問題です なぜ3枚目の赤線のような式になるのか分かりません 教えて頂きたいです🙇‍♀️

[実戦] 5 絶対値を含む連立不等式 タイムリミット20分 先生と太郎さんと花子さんは,数学の授業で,以下の連立不等式について考察している。 [x-2a≧-3 ||x+a-2|<6 ① ・② の 3人の会話を読んで (1)~(3)の問いに答えよ。 ただし, αは定数とする。 先生:まずは,不等式 ② に注目してみましょう。 a=0 のとき, 不等式 ② の解を求め てみてください。 太郎: アイ <x<ウとなります。 先生: 正解です。 Q (1) アイ, ウ に当てはまる数を答えよ。 先生:次に,x=1 が不等式① を満たさないようなαの値の範囲を求めてみましょう。 太郎: x=1 が不等式① を満たさないから, 不等式① に x=1 を代入してもその不等 式は成り立たないよね。 つまり,x=1 が不等式①を満たさないための必要十分 条件は 1-2α エ |-3 だね。 花子:もう一つ考え方があるんじゃないかな。 不等式① を xについて解くと, x≧2a-3 となるか ら,これを数直線で表すと右の図のようになるよ。 2a-3 この図から x=1 が不等式① を満たさないとき, オ 2α-3となることからもαの値の範囲が求められるね。 太郎 : 確かにどちらの不等式を解いても, a カキ となるよ。 先生:そうですね。 2通りの考え方ができましたね。 J (2) I オ カ に当てはまるものを、次の①~⑤のうちから一つずつ選 べ。 ただし, 同じものを繰り返し選んでもよい。 ⑩ > ① < ②≧ ④C また, キ に当てはまる数を答えよ。

未解決 回答数: 1
数学 高校生

9の(2)の問題でマーカーが引いてある式はどこから考えたのですか?

4 メジⅠⅡABC受 一方, 解が1≦x≦be y ゆえに、 15 22で、他の解は x=4 (2)与式から 2y-10+(x+3y)√2=0 x-2y-10, x+3yは有理数 あるから は無理数で あるxの2次不等式で, x2の係数がα (<0) で あるものは y=a(x-1xx-b) 01 b x-2y-10=0, x+3y=0 これを解いて x=6, y=-2 すなわち (3) 与式から+3-2xi=1-3y+(3+y)i 3,2x, 1-3y, 3+y は実数であるから x2+3=1-3y ...... ① -2x=3+y a(x-1)(x-b)≥0 ax2-(ab+a)x + ab≧0 ② ①②の係数を比較すると 8 -(ab+a)=' ...... ② ②から y=-2x-3 ...... 3 ①に代入して整理すると x2-6x-7=0 これを解くと よって (x+1)(x-7)=0 工 ゆえに x=-1,7 ③から x=1のとき y=-1 ab=-2 2 a=-= -3 b=3 これはa<0 を満たす。ナスリー 別解 (①を導くところまで同じ) 8 F(x)=ax2+2/3x-2 とおく。 ① を満たすxの範囲が1≦x≦b であるとき, x=1は2次方程式 F(x)=0の解の1つである。 よって, F(1) = 0 から 8 x=7のとき y=-17 したがって (x,y)=(-1, -1),(7,17) 9 (1) 3x-52(x+α) を解くと これを満たす最大の整数 xが8であるための条件 は 8<2a+59 x<2a+5 a+-2=0 2 すなわち a=- 12/3(これはa<0を満たす) すなわち 32a≦4 よって多く 2a+59 3 X 8 このときは12/22 2023x-220 <a≤2 整理して (2) [1] k=0のとき すなわち 不等式は1>0 となり, すべての実数xについ て成り立つ。 ゆえに x2-4x+3≤0 (x-3)(x-1)≦O 1≦x≦3 [2] 08-11 したがって a=-- 2 3' b=3 不等式が常に成り立つ条件は, (左辺 = 0 の判 別式をDとすると k0 ...... ① かつ D0 Jei ここで D=(3k)2-4k(k+1)=k(5k-4) D<0 から 5k-4) <0 よってok ② 4 ①,②からok</ 4 以上から (3) f(x) ≥9(x)+5 ゆずに 10 (1) x3= (x2+2x+4)(x-2)+8 =8 2 x²+1 = (x+1)−3·x±√(x++) 心 =33-3.3=18, 2.x2. **+=(+)-2-x² +1 = (x²+ ±17)² - 2. x². x4 1 -{(x+1)-2-x-12-2 =(32-2)2-2=72-2=47 x+2x+2=1/2x+4 (3)展開式の一般項は すなわち x + fx-220① 3C, (2x2)-(1)=C, 27—1 x 27—1)-

未解決 回答数: 1