学年

教科

質問の種類

数学 高校生

どうして下線部で第(k+1)項になるのかが分かりません

40 & マリ共和 京都:パマコ マラウ 首都:リロ 93 コ陰表歴総化基生会 PR 07 312 数学B (2) 数列 (n.) の初項から第n項までの和を S. とする。 (1) より m) から an までは正の数。 gからは負の数となる から, Saは-16 のとき最大となる。 Si-16(2-77+(16-1)-(-5))-632 よって、 初項から第16項までの和が最大で,最大値は632 (8) S-n(2-77+(n-1)-(-5))=5n³+159 --5(n-159)² +5 (159) 10 159_ 10 =15.9 に最も近い自然数16のとき最大 よって, nが となり, 最大値は ・162+ 159. 16=632 2 ゆえに,初項から第16項までの和が最大で、最大値は2 a=bm とすると よって n 51-8m=1...... ① l=-3, m=-2 は ① の整数解の1つである。 よって 5・(-3)-8・(-2)=1 ...... 2 ①-②から 5(1+3)-8(m+2)=0 一般項が5n+4 である等差数列{an}, 一般項が 8n +5 である等差数列を {bn} とする。 ( と (6²) に共通に現れる数を小さい順に並べてできる数列{cn}の一般項を求めよ。 51+4=8m+50 すなわち 5(1+3)=8(m+2) ...... ③ 5と8は互いに素であるから, l+3は8の倍数である。 ゆえに,kを整数として, 1+3=8k と表される。 これを③に 代入すると m+2=5k よってl=8k-3, m=5k-2 l, m は自然数であるから このとき これは,数列{C}の第k項である。 したがって, 数列{cn}の一般項は Cn=40n-11 [inf. ① の整数解の1つを, l=5,m=3 とすると l = 8k+5 が得られる。I≧1 とすると となるので、 k≧1 a=5l+4=5(8k-3)+4=40k-11 とみて -160 16(77+2) としてもよい。 S. 頂点最大 であり, ・・であるからC1=29 項を表す。 よって, 求める一般項は Cn=40(n-1)+29=40n-11 として求めなければならない。 40 別解 5と8の最小公倍数は {an}:9, 14, 19, 24,29, ****** 100の間にあ めよ。 (2) 110 の間にあ 1と100の間にあ 3'3' 3, これは初頭が から、 ①の和は ①のうち 整数 2+3+ したがって, 求 p+1 (2) 1と10の間 Þ これは初項か 10p-1-(p lmk は自然数。 11, m≧1 とすると k≧1 になる。 よって, a=40k~11は 数列{C}の第k項。 { cm} のnは自然数である a=51+4=5(8k+5)+4=40k +29 は, 数列{cn}の第(k+1) k≧0となるが、数 から、0以上の整数と 自然数nを対応させる必 要がある。 ①の? したがっ 11 (9p- 2 よって {bn}:13,21,29,37,45, よって,数列{cm} は 初項 29, 公差 40 の等差数列であるから, (公差)=(2つの数列 その一般項は Cn=29+(n-1)・40=40n-11 の公差の最小公倍数) 1 2 PR 29 xx=8utsm② xすると 初工 (1) h

回答募集中 回答数: 0
数学 高校生

 基本例題の(2)について質問です。不等号の付け方と、なぜ①に-3をかけたり②と③の各辺を加えたりするのかが分かりません。  詳しく解説してくださると嬉しいです  回答よろしくお願いします🙇‍♀️

12 基本 33 不等式の性質と式の値の範囲 (2) x,yを正の数とする。 x, 3x+2y を小数第1位で四捨五入すると,それぞれ6, 21 になるという。 ① x の値の範囲を求めよ。 (2) y の値の範囲を求めよ。 解答 まずは、問題文で与えられた条件を,不等式を用いて表す。 例えば, 小数第1位を四捨五入して4になる数αは, 3.5以上 4.5未満の数であるから, aの値の範囲は3.5 ≦a <4.5である。 (2) 3x+2y の値の範囲を不等式で表し, -3xの値の範囲を求めれば,各辺を加えるこ とで2yの値の範囲を求めることができる。 更に,各辺を2で割って, yの値の範囲 を求める。 (1) xは小数第1位を四捨五入すると6になる数であるか 5 5.5 ≦x< 6.5 (1) (2) 3x+2yは小数第1位を四捨五入すると 21 になる数で あるから 20.5 ≦3x+2y <21.5 ① の各辺に-3を掛けて -16.5≧-3x > -19.5 -19.5<-3x≦-16.5 すなわち ②,③の各辺を加えて したがって 5 各辺を2で割って 1/12 << 2 20.5-19.5 <3x+2y-3x<21.5-16.5 1<2y<5 (*) 01-x8 ②の3x+2y<21.5 から ③の-3x≦-16.5 から になるという。 ...... (3) xの値の範囲を求めよ。 基本 32 15.5≤x≤6.4, 5.5≤x≤6.5 などは誤り! 3x+2y-3x<21.5-3x 21.5-3x≦21.5-16.5(=5) 不等号にを含む・含まないに注意 上の2yの範囲 (*)の不等号は, ≦ではなく であることに注意。 例えば、 右側について 検討 は 負の数を掛けると、不等 号の向きが変わる。 不等号に注意 (検討参照)。 正の数で割るときは, 不 等号はそのまま。 よって 3x+2y-3x21.5-3x≦5 したがって, 2y<5となる (上の式の等号が成り立たないから, 2y=5とはならない)。 左側の不等号についても同様である。 練習 x,yを正の数とする。 x, 5x-3y を小数第1位で四捨五入すると, それぞれ7,13 ③ 33 p.78 EX 29、 65 章 ④1次不等式

回答募集中 回答数: 0
数学 高校生

(3)が分かりません!考え方を解説お願いします🙇‍♀️

第4問 (選択問題)(配点20) 太郎さんと花子さんは、 数列の漸化式に関する問題について話している。 問題数列{an}は を満たしている。 このとき, an を求めよ。 また, Sm = |a|+a2+as|+...... + anl とする。 S" を求めよ。 太郎: 一般項an を求めるには, 漸化式 an+1=-2a+6 を an+1 - α = p (an-α)の 形に変形するといいね。 花子:そうだね。 このことを使ってα を求めることができるね。 一 100 20.0 20.0 0.0 0.0 20.0 |α1=5, an+1=-2an+6 (n=1,2,3,...) isht e vona o trae ni kaz8.0 (1) 数列{an}の一般項は OCALOOLAG となる。 I an= の解答群 On-1 ア + ①n オ a=-2a+6 30=6 X=2 anti-2=-2an-2 ②n+1 太郎 : S はどうすれば求められるかな。 花子: 具体的に数列の項を求めてみると, a2=-4,43=14,44=22だね。 (第4回13) 一般項の式から考えると,数列{an}の偶数番目の項は負の数奇数番目の 項は正の数となるね。 太郎: 偶数番目までの項の和と, 奇数番目までの項の和というように場合分け をして考えたらどうかな。 3P 3 Acc an-2=-3-1-217-) gh=3(-21h +2 (数学ⅡI・数学B 第4問は次ページに続く。) (2) nが偶数のときを考える。 S=カキ である。 nが偶数のとき, n=2mmは自然数)と表すことができるから S2m=|a1|+|az|+|a3++α2m-1|+|12m | =|a1|+|a3|+|as|+......+|a2m-1| と変形できる。 このとき となり となる。 a₁+as+as+...+ a2m-1=202 +|az|+|a4|+|a6|+......+|azm| = a₁+as+a5++a2m-1-(a₂+a₁+as++ a2m) e(k-1) a2+ax+a+.………+α2m = Za であるから a2k-1= k=1 ②24=②サシ S2m = a2k-11 ス クケ k=1 tz a2k = a2k ケ a+=592= 5-4414-2²3-7 26 19 k-1 a2k-1 ソ -1 + + コ - コ 3.(-2)24-2 + = 3-4k-1 + J 3(-2) こ -6 ( 2 (01 (数学ⅡⅠ・数学B 第4問は次ペ 3.4k-1

回答募集中 回答数: 0
数学 高校生

(3)が分かりません!考え方や符号の決め方を解説お願いします🙇🏻‍♀️

第4問 (選択問題)(配点20) 太郎さんと花子さんは、 数列の漸化式に関する問題について話している。 問題数列{an}は を満たしている。 このとき, an を求めよ。 また, Sm = |a|+a2+as|+...... + anl とする。 S" を求めよ。 太郎: 一般項an を求めるには, 漸化式 an+1=-2a+6 を an+1 - α = p (an-α)の 形に変形するといいね。 花子:そうだね。 このことを使ってα を求めることができるね。 一 100 20.0 20.0 0.0 0.0 20.0 |α1=5, an+1=-2an+6 (n=1,2,3,...) isht e vona o trae ni kaz8.0 (1) 数列{an}の一般項は OCALOOLAG となる。 I an= の解答群 On-1 ア + ①n オ a=-2a+6 30=6 X=2 anti-2=-2an-2 ②n+1 太郎 : S はどうすれば求められるかな。 花子: 具体的に数列の項を求めてみると, a2=-4,43=14,44=22だね。 (第4回13) 一般項の式から考えると,数列{an}の偶数番目の項は負の数奇数番目の 項は正の数となるね。 太郎: 偶数番目までの項の和と, 奇数番目までの項の和というように場合分け をして考えたらどうかな。 3P 3 Acc an-2=-3-1-217-) gh=3(-21h +2 (数学ⅡI・数学B 第4問は次ページに続く。) (2) nが偶数のときを考える。 S=カキ である。 nが偶数のとき, n=2mmは自然数)と表すことができるから S2m=|a1|+|az|+|a3++α2m-1|+|12m | =|a1|+|a3|+|as|+......+|a2m-1| と変形できる。 このとき となり となる。 a₁+as+as+...+ a2m-1=202 +|az|+|a4|+|a6|+......+|azm| = a₁+as+a5++a2m-1-(a₂+a₁+as++ a2m) e(k-1) a2+ax+a+.………+α2m = Za であるから a2k-1= k=1 ②24=②サシ S2m = a2k-11 ス クケ k=1 tz a2k = a2k ケ a+=592= 5-4414-2²3-7 26 19 k-1 a2k-1 ソ -1 + + コ - コ 3.(-2)24-2 + = 3-4k-1 + J 3(-2) こ -6 ( 2 (01 (数学ⅡⅠ・数学B 第4問は次ペ 3.4k-1

回答募集中 回答数: 0
数学 高校生

(3)が分かりません!考え方を解説お願いします🙇🏻‍♀️

第4問 (選択問題)(配点20) 太郎さんと花子さんは、 数列の漸化式に関する問題について話している。 問題数列{an}は を満たしている。 このとき, an を求めよ。 また, Sm = |a|+a2+as|+...... + anl とする。 S" を求めよ。 太郎: 一般項an を求めるには, 漸化式 an+1=-2a+6 を an+1 - α = p (an-α)の 形に変形するといいね。 花子:そうだね。 このことを使ってα を求めることができるね。 一 100 20.0 20.0 0.0 0.0 20.0 |α1=5, an+1=-2an+6 (n=1,2,3,...) isht e vona o trae ni kaz8.0 (1) 数列{an}の一般項は OCALOOLAG となる。 I an= の解答群 On-1 ア + ①n オ a=-2a+6 30=6 X=2 anti-2=-2an-2 ②n+1 太郎 : S はどうすれば求められるかな。 花子: 具体的に数列の項を求めてみると, a2=-4,43=14,44=22だね。 (第4回13) 一般項の式から考えると,数列{an}の偶数番目の項は負の数奇数番目の 項は正の数となるね。 太郎: 偶数番目までの項の和と, 奇数番目までの項の和というように場合分け をして考えたらどうかな。 3P 3 Acc an-2=-3-1-217-) gh=3(-21h +2 (数学ⅡI・数学B 第4問は次ページに続く。) (2) nが偶数のときを考える。 S=カキ である。 nが偶数のとき, n=2mmは自然数)と表すことができるから S2m=|a1|+|az|+|a3++α2m-1|+|12m | =|a1|+|a3|+|as|+......+|a2m-1| と変形できる。 このとき となり となる。 a₁+as+as+...+ a2m-1=202 +|az|+|a4|+|a6|+......+|azm| = a₁+as+a5++a2m-1-(a₂+a₁+as++ a2m) e(k-1) a2+ax+a+.………+α2m = Za であるから a2k-1= k=1 ②24=②サシ S2m = a2k-11 ス クケ k=1 tz a2k = a2k ケ a+=592= 5-4414-2²3-7 26 19 k-1 a2k-1 ソ -1 + + コ - コ 3.(-2)24-2 + = 3-4k-1 + J 3(-2) こ -6 ( 2 (01 (数学ⅡⅠ・数学B 第4問は次ペ 3.4k-1

回答募集中 回答数: 0