学年

教科

質問の種類

化学 高校生

どうやってグラフの縦軸と横軸を決めるんですか??

化学 C 反応速度に関して 反応物Aから生成物Bが生じる反応における反応 速度が,Aのモル濃度 [A] に比例するとき, 比例定数を とすると,その 反応速度は式(4) で表される。 (4) v = k₁[A] ただし、このような化学反応の反応速度は、常に反応物のモル濃度に比 例するとは限らず、反応物のモル濃度の2乗や3乗などに比例する場合が あり、反応速度が反応物のモル濃度 [A]の乗に比例するとき,比例定 数を とすると,反応速度の一般式は式 (5) で表される。 この式を 反応速度定数 n を反応次数という。 v = k,[A]" (5) n=1のとき、横軸を [A],縦軸を”としたグラフを描くと,”と[A]は 比例するので,k, は直線の傾きとして求められる。 しかしn≠1の場合, グラフは直線とならないため、グラフから反応次数や反応速度定数を決定 することは難しい。 ここで,式(5)の両辺の対数をとって整理すると,式(6) が得られる。 式 (6) では logo と logio [A] の関係を表すグラフが直線になり 反応次数や反応速度定数を決定することができる。 log100= log10ken [A]" より log102=nlog10 [A] + logiokn (6) ある物質XからY が生成する反応について, Xの初濃度 [X] を変えて, 反応速度を測定した。 [X], およびそれらの対数の値が表1のように 変化した場合, 反応次数nの値はいくらか。 最も適当な数値を,後の ①~④のうちから一つ選べ。 なお,必要があれば,後の方眼紙を使うこ と。 29

解決済み 回答数: 1
物理 高校生

オームの法則の導出のところで、最後にRを逆数で置かなきゃ成り立たないことは分かるのですが、どうして逆数としてRを置くのか教えて頂きたいです。

第4編 電気と磁気 抗に電流が流れていないときには電圧降 下はOVであり,抵抗の両端は等電位で ②電圧降下 抵抗 R[Ω] の導体に電流 I[A] が流れると, オームの法則により, 抵抗の両端の間で RI[V]だけ電位が下が る。これを電圧降下という(図42)。抵 voltage drop 電位 受けているとすると,この抵抗力と電場から受ける力のつりあいより 電圧 e V = kv 降下 (34) 低 RI[V] eV この式よりv= kl となるので,これを (33) 式に代入すると 抵抗 R [Ω] 位置 eV I = en X xS= kl e²nS V kl (35) 電流 [A] I=enus 休 と表される(図43)。 (33) 復習 問21 断面積 1.0×10 m² の導線に 1.7A の電 流が流れているとき, 自由電子の平均 移動速度v [m/s] を求めよ。 導線1.0m² 当たりの自由電子の数を 8.5×1028/m3, 電子の電気量を-1.6 × 10-19 C とする。 ② オームの法則の意味 図44のように, 長さ[m], 断面積 S[m²] の導体の両端 に電圧 V[V] を加えると, 導体内部に E = ¥ [V/m] の電場が生じる。導体中の 自由電子はこの電場から大きさe ¥ [N] の力を受けて、陽イオンと衝突しながら 進むが,自由電子全体を平均すると一定 の速さ [m/s]で進むようになる。 この とき,自由電子は陽イオンから速さ”に 比例した抵抗力ku [N] (k は比例定数) を 258 第4編 第2章 電流 自由電子全体を平均したもの 速さ 電場E= 陽イオン 静電気力 e 抵抗力 P222 陽イオン S〔m²] ある。 C オームの法則の意味 電子の運動と電流 断面積 S[m²]の導 体中を自由電子(電気量-e [C]) が移動す る速さを v[m/s], 単位体積当たりの自 由電子の数を n [1/m] とすると, 電流 の大きさI[A] は 図43 電子の運動と電流図の 断面 A を t[s] 間に通過する自由電 子は,断面Aの後方 長さ of [m] の円柱部分に存在していたと考え られる。 ●の円柱内の自由電子の 数は 何個分 体積 N=nx (ut XS)= nutS であり,合計の電気量の大きさは Q=exN=envtS である。 これと (31) 式 (p.256) より envtS t 図 42 電圧降下 これは,オームの法則を表している。 ここで kl R= (36) Op.257 オームの法則 e²nS V 1= (32) R 百由電子 とおくと I = が得られる。 V 断面積 S R vt D抵抗率 k ロー ①抵抗率 (36) 式において, e²n をp とおくと,抵抗R [Ω] は次のよう 10 に表すことができる。 映像 Link Web サイト 抵抗率 R=p (37) 抵抗 2R S 長さ2倍にすると R[Ω] 抵抗 (resistance) [m] 抵抗率 I=- t = envS 15 〔m〕 抵抗の長さ (length) S〔m²] 抵抗の断面積 抵抗 R S 断面積2倍にすると -1〔m〕 V[V] 図44 オームの法則の意味 比例定数は,注目する物質の材 質や温度によって決まる。これを抵 2S- 抗率(または電気抵抗率, 比抵抗) といい, resistivity 単位はオームメートル(記号 Ω·m) で ある。 抵抗 1/2 ①図 45 長さ 断面積の異なる抵抗 問22 断面積が2.0×10-7m² 抵抗率が1.1×10Ω・mのニクロム線を用いて, 1.0Ω の抵抗をつくりたい。 ニクロム線の長さを何mにすればよいか。 [Link 259 復習

解決済み 回答数: 1
物理 高校生

202の(3)を教えてください。(2)と同じになると思いました。

こり、 という. 分子内部での電子 より電荷のかた この現象を利用している.また, (3) )のかたよりによってお 200 (クーロンの法則) 次の問いに答えよ. クーロンの法則の比例定数はk=9.0×10N・m²/C2 とする. (1) 2つの点電荷g1 = 3.0×10 C, g2=6.0×10 Cを3.0m離しておくときの静電気力の大きさ は何N か. 20×10-12 12×1.3×101 1.8×10-2N (2) 2つの点電荷g1 = 3.0×10 C, g2=6.0×10 Cの間に0.20Nの力がはたらいた. 点電荷 間の距離は何か。 =9.0×109.3.0×106×6.0×10%= 390x 10'm 3点電荷71=3.0×10 °Cと点電荷g2 を 1.0m離しておいたら270-Nの力がはたらい た点電荷Q2の電気量は何Cか. 9.0×104×3.6×106Q2=27×10-3 H Q2 28×6-3 9.5×10°×3×107 練習問題 A 201(クーロンの法則)+3.0×10 C, -1.0×10-Cの電荷をもつ同じ大きさの2つの小さな 金属球が0.30m離れた位置におかれている。 クーロンの法則の比例定数を9.0×10°N・m²/C2 とする. (1) 2球が互いに及ぼしあう力の大きさは何Nか、またそれは引力か斥力か. 次に2球をいったん接触させた後,再び 0.30m離した. (2) 各球のもつ電荷はそれぞれ何Cか. (3)このとき、2球が互いに及ぼしあう力の大きさは何Nか.またそれは引力か斥力か. 202. (静電誘導と誘電分極) 材質と大きさが同じで、電荷をもっていない2つの金属球A,Bに 帯電体Cを近づけて, 図のように次の順に操作をするとき, 金属球の表面に現れる電荷の分布を 図に示せ. C A B (1) 接触しているA,BのAに負の帯電体Cを近づける. (2) Cを近づけたまま, AとBを少し離す. (3)(2)の状態から Cを十分遠くに離す. B (2) (4)(3)の状態から, A, B を十分遠くに離す. A B A,Bを不導体(誘電体)でできた球D,Eにかえて, (3) 上の(1)~(3)と同じ操作を行う. B (5) (3)のとき,D,Eの表面に現れる電荷はどうなるか. (4) 文章で答えよ.

回答募集中 回答数: 0
地学 高校生

問題の解説文、赤線から下の部分について上手く理解できません。分かりやすい解説をお願いします…

問5 東西に60km離れて並んだ地点XYと,地点Xと地点Yの中間の地点 Aから北に 48kmの距離に位置する地点Zで, ある地震を観測した。 次の 図3は,各観測地点の位置関係を示したものであり,地点Bは地点Aと地点 Zの中間の地点を示している。また,表1は,各観測地点で観測された初期 微動継続時間を示したものである。 表1より, 地点Xと地点Yでの初期微動 継続時間が等しいことから,この地震の震央は地点Z, 地点 A, 地点 B を含 む直線上にあることがわかる。 この地震について 震源から地点Aまでの距 へいたん 離と震央の位置の組合せとして最も適当なものを,下の①~④のうちから一 つ選べ。 なお、この地域の地表面は平坦であり, 震源距離 D (km) と初期微 動継続時間 T(秒) の間には,D=8T という関係が成り立つものとする。 5 Z 北 である。 問5 震源距離 D は, 初期微動継続時間 Tと比例定数によって D=kT と表される。 これを大森公式という。 比例定数は,通 常 6~8km/sである。 本間ではk=8とした。 問題の表1の値 を使用すると、 震源距離は, 地点 Xと地点Yでは8×6.25=50 km, 地点Zでは8×5.00=40kmである。 図1-5のように, 地点Xと地点Yを中心として震源距離 50 kmを半径とする円は地点Aを通る南北の線上で交わる。 地点 A 60 と地点X地点Yとの距離はそれぞれ =30kmであることか 2 ら、2つの円の交点と地点Aの距離は50-30=40kmである (図1-5)。震源が地点X, Yからともに50kmの距離にあると いうことは,地点X, Yを中心とした半径50kmの球面の交線上 にあるということであり,それは,直線XY と直交する平面上の, 地点Aを中心とした半径40kmの半円上に震源があるというこ とである (図1-6)。 したがって, 震源から地点Aまでの距離は 40km であることがわかる。 地点Aを含み, 直線XYと直交する平面は地点Zを含む(図1 -6)。 地点 Zから震源までの距離は40km であることから, 震 源を0とすると,Z・A・Oの3点からなる三角形は二等辺三角 形となり, △ABOと△ZBOは合同な直角三角形である。 した がって、震源の真上の地点である震央の位置が地点Bであること がわかる。 以上のことから② が正解である。 B |48km X A 60km 図3 ある地震の観測地点 北 B 24 km B 24 km 30km 地表 A Y 40km 40km 40km 50 km 震源 図1-5 図1-6 なお,図1-5で描いた2つの円に加えて, 地点Zを中心とし た半径40kmの円を描き, 地点X, Yを中心とする円との交点を 結ぶ共通弦を引くと, 3つの円の共通弦が地点Bで交わることか らも、震央の位置は地点Bであることがわかる (図1-7)。 表1 地点XYZにおける初期微動継続時間 B 観測地点 X Y Z x A Y 初期微動継続時間(秒) 6.25 6.25 5.00 図1-7 5 ・・・② 北 : L H

解決済み 回答数: 1