学年

教科

質問の種類

物理 高校生

物理の電磁気、交流回路についての質問です。 (4)、(6)についてです。 僕は(2)で求めた電流についてのtの関数を積分してQ=CVに代入、同じく微分してV=L*(di/dt)に代入してそれぞれコンデンサーとコイルにかかる電圧をtの関数で表してからその関数の最大値を√2で割... 続きを読む

100 /10 10 7 100 (センター試験) 130 図1のように,抵抗値 R の抵抗,電気容量 C のコンデンサーおよ び自己インダクタンスLのコイルを直列に接続し, 交流電源につない だ回路がある。 オシロスコープで抵抗の両端の電圧を観測したところ, 図2のような周期T, 最大値 V の正弦曲線であった。 オシロ 電圧 スコープ Vo--- T m 2 T 抵抗 コイル 0 コンデンサー f t 時刻 - Vol 図2 図 1 (1) 交流の角周波数を求めよ。 以下, (5) 以外はTの代わりに を用いて答えよ。 (2) (3) この直列回路での消費電力 (平均電力) を求めよ。 また実効値を求めよ。 抵抗に流れる電流を時刻tの関数として表せ。 (4) コンデンサーにかかる電圧の実効値を求めよ。 また, 電圧 vc を時 刻tの関数として表せ。 (5)図2で,コンデンサーにかかる電圧が0になる時刻を Ost ST の範囲で求めよ。 (6)コイルにかかる電圧の実効値を求めよ。 また,電圧 v を時刻tの 関数として表せ。 \(7) 電源電圧の最大値 V, を求めよ。 また, ab間の電圧の最大値を 求めよ。 + (富山大 上智大 )

未解決 回答数: 1
数学 高校生

FG例題115 黄色マーカ部はなぜ成り立つのですか?

で、3 軌跡と領域 21. 例題 115 領域と最大・最小(2)) ・大 **** 連立不等式 x≧0, y≧0 4≦xty's 最大値、最小値と,そのときのx,yの値を求めよ。 の表す領域において,x+3y の (大阪電気通信大改) 東方 例題 113 (p.216) と同様に、まず与えられた不等式を満たす領域を求める 次に、x+3y=kとおいて考えるとよい。 答 与えられた条件を満たす領域 D は、 右の図の斜線部分で, 境界線 を含む、 yA 境界線は, x+y= 4, B k-3/10 x+y= 9, x+3y=k とおくと、 2 x軸と軸 1 k 13 0 2/ th 3 1 より、傾き k 3' 切片の直線 である。 この直線が領域 D と共有点をもつとき、上の図のように、 (i) 点Aを通るときは最小 (i) 点Bで接するときは最大 となる. (i) 図より A(2.0) である小 この k=x+3y=2+3.0=2 (i)円x²+y2=9 と直線 x+3y=k が接するときの 中心 (0, 0) 直線の距離は、 切片が最小 y切片が最大 k の最小値 円と直線が接する 円の中心と直線の 距離が半径と等し くなる |kk| d= √12+32 √10 kl これが円の半径3と等しくなるから, =3より, √10 1円と直線の式を連 立させて、判別式 D=0 としてもよい。 中||=3√10 つまり, k=±3/10 S したがって,図より、 k=3√10 JA 図より, k0 んの最大値 このとき点は、直線 y=1/2x =-2x+√10 と原点 直線OBの傾き 3. x+√10=3xより、 x= 3√10 18を通りこの直線に垂直な直線 y=3x との交点だから、 OB=3 より 点B の座標は、 10 MA-3. V10 B 9/10 このとき y= 10 y=3• 3 /10 3√10 よって, x+3y の最大値 3√10x= y= 10 10としてもよい、 10 最小値2 (x=2,y=0) x, y が不等式 x+y's5, y≧2x を同時に満たすとき,次の式のとる値の最 大値、最小値と,そのときのxyの値を求めよ。 (1) y-3 (2) 2y-x →p.23034

解決済み 回答数: 1
物理 高校生

(1)について教えてください。 加速度を求める公式として2枚目の公式を習ったのですが答えは違う公式を使っています。2枚目の公式はいつ使う物ですか🙇‍♀️?

(基本例題 3等加速度直線運動 x軸上を一定の加速度で運動する物体が、 時刻 t=0sに原点Oを正の向きに12.0m/sの速度で 出発した。 その後, 物体はある地点で折り返し、 t=5.0sには負の向きに8.0m/sの速度になった。 (1) 物体の加速度の向きと大きさを求めよ。 t=0s 0 t=5.0s 12.0m/s 8.0m/s (2)物体が折り返す時刻と、このときの物体の位置(x座標) を求めよ。 (3)t=5.0sでの物体の位置(x座標)と,この時刻までに移動した距離を求めよ。 解答 (1) 加速度をα[m/s] とすると,v=vo+αt から, -8.0=12.0+α×5.0 よって, a=-4.0m/s² x軸の) 負の向きに 4.0m/s^ (2) 折り返す地点での速度は0m/sである。 折り返す時刻をt[s] とすると, = v +αt から, 4 [m/s] 12.0 0=12.0+(-4.0)xt よって, t=3.0s S₁ 3.0 5.0 0 このときの位置をx[m] とすると, x=vot+/12/12 から, Sa t(s) -8.0 x=12.0×3.0+ 1/2×(-4.0)×3.02=36-18=18m (3)4=5.0sでの位置をx'[m] とすると, x=vot+ 1/12から 時刻・・・ 3.0 s, 位置…18m x=12.0×5.0+1/2×(-4.0)×5.0°=60-50=10m 10 X 18 (2)の結果から, t=3.0s 以降は負の向きに移動するので、 t=5.0sまでに移動した距離 s 〔m〕は. 別解 右上のtグラフの面積S, 〔m) Sz[m] を用いて, s=Si+Sz=18+8.0=26m x'=S,-S=18-8.0=10m 途中で運動の向きが変わる 場合は、 s=18+ (18-10)=26m 位置・・・10m, 移動した距離...26m (移動した距離) 原点からの変位 運動の式)」を使うか

未解決 回答数: 1