学年

教科

質問の種類

数学 高校生

(2)の数直線のとこで3a−2/4はなんで⚪︎なんですか⚫︎で表されるんじゃないんですか?

68 基本 例題 36 1次不等式の整数解 (1) (1)不等式 5x-7<2x+5を満たす自然数xの値をすべて求めよ。 3a-2 (2) 不等式 x <- 4 の範囲を求めよ。 000 を満たすxの最大の整数値が5であるとき、 定数αの値 指針 (1) まず, 不等式を解く。 その解の中から条件に適するもの (自然数) を選ぶ。 (2) 問題の条件を 数直線上で表すと、 右の図のようにな 基本34 基本 kk 5-x す整数 6 3a-2 x 指針 4 る。 のの 3a-2 4 を示す点の位置を考え、問題の条 件を満たす範囲を求める ▼自然数=正の整数 (1) 不等式から 3x<12 4は含まない 解答 したがって x<4 xは自然数であるから x=1,2,3 左 3a-2 (2)x< 4 を満たすxの最大の整数値が5であるから 1 2 3 4 * 解答 5 <- 3a-2 4 ≤6.. ...... (*) ara (st 4 3a-2=5のとき,不等 (0< 式は x<5 で,条件を満 3a-2 5- ・から 20<3a-2 4 たさない。J って、22 3a-2 4 よって a> ① =6のとき、不等 e>x 3 3a-2 8>* 式はx<6で,条件を満 ≦6から3a-2≦24 たす。 4 TO ① 26 よって as ② (S) 3 ① ② の共通範囲を求めて 22 51 3a-2 6 x 26 各辺に4を掛けて 20<3a-2≦24 各辺に2を加えて 22<3a≦26 22 26 各辺を3で割って <a≤ 3 3 注意 (*)は,次のようにして解いてもよい。 表す図 3 <a≤ 3 OSI ① わる。 検討 (22) >I 3 23 26 a

回答募集中 回答数: 0
数学 高校生

数列です。一番最後の問題って単にnについての不等式だとみてそれを解けたりとかできないですよね?回答お願いします。

●2等比数列・ (ア) a, b, cは相異なる実数で, abc = -27 を満たしている.さらに,a,b,cはこの順で等比数 列であり, a,b,c の順序を適当に変えると等差数列になる.a,b,c を求めよ. (宮城教大) (イ) 初項と第2項の和が135で,第4項と第5項の和が40である等比数列{a}の公比は である.ただし各項は実数とする.また,初項が84で,初項から第5項までの和が290である等 ]である.これら2つの数列{a}, {bm}に関して,an>by が成り立つ 差数列{6} の公差は 最小のnの値は である. C (東京工科大・メディア) a, b, c がこの順に等差数列 bn 3項が等差数列, 等比数列になる条件 であるときa+c= 26, また, x, y, zがこの順に等比数列であるとき, πz=y2 が成り立つ (b-a=c-b; 等差数列・等比数列の大小 π:y=y:zより分かる). {a} が等差数列, {bm} が等比数列 (公 比は正)のとき, (n, an) は直線上, (n, bm) は指数関数のグラフ (下に 凸) 上に乗る. 等差数列, 等比数列の各項の大小はグラフを描くと様子 がはっきり分かる. (右図のように, 2交点の間では, 等差>等比) 解答 (ア) a, b, cはこの順で等比数列だから, ac=62 これとabc=-27より, 63-27 ∴.b=-3 cをαで表して, (a, b, c) = (a, -3, 9/α) ..ac=9 以下, 等差数列の条件を考える. 中央項がどれになるかで場合分けする. 9 a 9 2°a+==2(-3) 1° -3+-=2a 9 3° α+(-3)=2• a 1° のとき,2a2+3a-9=0 . (a+3) (2a-3)=0 a = bよりα キー3だから, a=3/2 ..c=6 2°のとき,a2+6a+9= 0 .. α=-3 これは α = 6に反する. 3°のとき, α2-3a-18=0 ∴ (α+3)(a-6)=0 以上から, (a,b,c) = (3/2, 3, 6), (6, -3, 3/2) (イ) {a} の初項をα 公比をとおくと, an=arn-1 a1+az=a+ar=α(1+r)=135 astas=ar3+ara=ar3(1+r)=40] a=6 12 \3 27 82 2|3 123 an 中央項がα, b, c で場合分け. 1° は αが中央項で, b+c=2α と なる. 2° はんが中央項, 3° はc が中央のとき. α=6のとき,c=9/6=3/2 [(イ) 後半の方針] > b は解 ... ける不等式ではない。最小の を求めたいので, n=1,2, … から 順に調べていくのが早い.なお, 座標平面上に (n, an), (n, bm) をプロットすると下図のように なる. より3= ar3(1+r) 40 a (1+r) 135 よって,r=" a=. 2 3' 135 135 -=81 1+r 5/3 b1+65 84+ (84+4d) {6} の公差をd とおく. b1 ~ 65 の和=- ・5= ・・5 が 290 Y 2 2 なので, (84+2d) ・5=290 2\n1 .. 42+d=29 .. d=-13 -y=97-13x y=810 a1 an=-81-1 ·(323), b₂=84–13(n−1) n 1 2 3 4 5 6 7 32 64 an 81 54 36 24 16 3 9 と表よりan>bmとなる最小のnは7. bi b² b3 bbs be at az 03 Sasas b 84 71 58 45 32 19 6 01234567 46 67 48 2

解決済み 回答数: 1