学年

教科

質問の種類

数学 高校生

この問題の エオで解答2ページを見た時に矢印の変換がなぜそうなるかわからないです(>_<) なぜ上の式からBは-4にならないことがわかるのですか? 教えてください!!!!

例題太郎さんと花子さんは方程式の解の個数に関する問題について話している。 二人の会 話を読んで、下の問いに答えよ。 問題 3次方程式(x-2)(ar2+bx+4)=0 (a,bは定数) が異なる二つの実数解をもつと きαをの式で表せ。 太郎: この3次方程式は (1次式)×(2次式)=0の形になっているから,x-2=0より,一つの実 数解がx=2だとわかるよ。 花子: そうすると, 2次方程式 ax+bx+4=0が残りの一つの実数解をもてばいいから, (i) 2次方程式 ar²+bx+4=0がx=2以外の重解をもつ場合 (ii) 2次方程式 ar2+bx+4=0がx=2ともう一つの異なる解をもつ場合 を考えればいいね。 まずは (i) の場合を考えてみると・・・ 判別式を利用して, a= となるわ イウ 太郎: だけどこれだと2次方程式の解がx=2の場合も含んでいて, 2次方程式の重解がx=2 だと,3次方程式の解は一つになってしまうから 2次方程式の解がx=2となるときを除 外しよう。 花子: そうか。 つまり6 キエオだね。 太郎: その前に他に何か忘れていることはなかったかな? 花子: そういえば, 「3次方程式」 と書いてあるから・・・。 太郎: あっ! そうだ! ar+bx+4は必ず2次式になるから,αキ カだね。 次は, (ii) の場合を考えよう。 a を6で表した式や条件はキ になるね。 (1) ア イウエオ カに当てはまる数値を答えよ。 (2) キに当てはまるものを、次の①~③のうちから一つ選べ。 b2 a= 6-4, 0 16 ①a< 62 16 6-40 a=-(6+2), (6+2), 6-2 11- 11/12 (6+2), 6-4, -2 数学- 26

回答募集中 回答数: 0
数学 高校生

223. このような記述でも問題ないですよね? またこの問題での接線を求めるときのプロセス、 ①接線の座標を仮定して接戦の方程式を立てる ②接線が通る点の座標を代入 ③微分を用いて求める という順番で進むのは一般的ですか??

演習 例題223 3本の接線が引けるための条件 (1) 曲線C:y=x+3x2+x と点 A(1, a) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 [類 北海道教育大] 1970 基本 218 である。 る。 指針▷ 3次関数のグラフでは、接点が異なると接線が異なる(下の 検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける 針の① の 曲線C上の点 (t +3t'+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, t3+3t+t) における接線の方程式を求め,これが点 (1,α) を 通ることから, f(t)=a の形の等式を導く。 ・・・・・・ CHART 3次曲線 接点 [接線] 別なら 接線 [接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, 3+ 312+t)に おける接線の方程式はy-(t+3t+t)=(32+6t+1)(x-t すなわち y=(3t2+6t+1)x−2t−3t2 ばよい。 この接線が点 (1,α) を通るとすると -23+6t+1=α ... ① f(t)=-2t+6t+1とすると f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とするとt=±1 f(t) の増減表は次のようになる。 -1 1 0 |極大 5 .... 0 + 極小 -3 7 - 5 t f'(t) -3 f(t) 3次関数のグラフでは,接点が異なると接線が異なるから, もの3次方程式 ① が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 -1/0 +トー の解 1 y=a t - Ku y=f(t) 定数 αを分離。 f(-1)=2-6+1 = -3, f(1)=-2+6+1=5 ①の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α, β (αキβ)で接すると仮定すると g(x)-(mx+n)=k(x-a)²(x-B)² (k=0) ←接点 重解 の形の等式が成り立つはずである。 ところが, この左辺は3次式, 右辺は4次式であり矛盾して いる。 よって,3次関数のグラフでは, 接点が異なると接線も異なる。 the これに対して, 例えば4次関数のグラフでは、 異なる2点で接する直線がありうる (前ページの 61 3 関連発展問題 38

回答募集中 回答数: 0
数学 高校生

224. 赤で書かれているu≠0について質問です。 これはg'(t)=6t(t-u)であり、 g'(t)=0のときt=0,u 極小値と極大値両方を持つ必要があるので u≠0ということですか?? また、「かつ」という書き方ではなくこうでもいいですか? (写真) 最後に、 ... 続きを読む

342 BE ひ)を通る 線Cの接線が3本存在するための u, vの満たすべき条件を求めよ。また、そ 条件を満たす点(u, v) の存在範囲を図示せよ。 演習 例題2243本の接線が引けるための条件 (2) |f(x)=x-x とし, 関数y=f(x) のグラフを曲線Cとする。点(u, 指針 前ページの演習例題223と考え方は同様である。 ① 曲線C上の点 (t, f(t)) における接線の方程式を求める。 (②21で求めた接線が, 点 (u, v) を通ることから,t の3次方程式を導く。 [③3] [②2] の3次方程式が異なる3個の実数解をもつ条件を,u, の式で表す。.... g(0)g(u) < 0 から (u+v)(-u³+u+v) <0 ②2 ②でu=0 とすると<0 となり,これを満たす実数は存在 しない。ゆえに,条件u≠0は②に含まれるから, 求める条件 は ② である。 u+v>0 ②から よって ....... -u³+u+v<0 u+v<0 \u³+u+v>0 ゆえに,点(u, v) を通るCの接線が3本存在するための条件s-# は,t の3次方程式 ① が異なる3個の実数解をもつことである。 よって,g(t)=2t3-3ut'+u+cとすると, g(t) は極値をもち, 極大値と極小値が異符号となる。 g'(t)=6t2-6ut=6t(t-u) であるから u=0 かつg(0)g(x)<0 v>-u \v<u³_u または <-u または \v>u³_u0 したがって,点(u, v) の存在範囲は 右の図の斜線部分。境界線を含まない。 解答 f'(x)=3x2-1であるから, 曲線C上の点の座標を(t, f(t)) とすると,接線の方程式は y-(t³-t)=(3t²-1)(x−t) DROLON y=(3t²-1)x-2t3 すなわち この接線が点 (u, v) を通るとすると+v=(3t2-1) u-2t3 よって 2t3-3ut2+u+v=0 ① 3次関数のグラフでは, 接点が異なれば接線も異なる前ページの検討参照 [1] 2c x≥0 にな ①を した これ [2] 2 f'(x V √√30 3 2√3 9 基本 219,演習20 DACO 2√3 √3 3 _y_f(t)=f'(t) (x-t) p.337 の例題 219 参照。 CLONEENHOU g' (t)=0 とすると t=0, u u=0のとき、 t=0,uの うち一方で極大、他方で 小となる。 v=uuのとき v=3u²-1 v=0 とすると √3 3 = u=± √3 のとき 3 u=± 2√3 9 (複号同順) 直線では線 CO 原点Oにおける接線。 ⑤ 224 曲線 Cの接線が3本存在するためのu, v 練習 f(x)=-x 3 +3x とし, 関数 y=f(x)のグラフを曲線Cとする。 点 (u, の条件を満たす点(u, v) の存在範囲を図 演習 ひの満たすべき条件を求めよ。 αは定 にαの また 指針▷f い)を運 解答 f(x)=x と 1 0 7 f'(x)= 求める ① [3] ①を よっ ゆよこい XM 表 これ [1]~ 練習

回答募集中 回答数: 0
数学 高校生

223.) この問題で記述している 「三次関数のグラフでは接点が異なると接線が異なる」 というのは一つの接線で2つの接点を持つ方程式も存在するが、3時間数は全てそうではない、ということですか??

43の考え方で s, f(s))で接する で接するとして 致する。 =(x-8)(x-1) 下の別 は え方によるものである。 ▼st を確認する。 方程式は x-31¹+81³. めの条件は、 方程 である。 をもてばよい。 -21-2) て、 sキナである。 0000 演習 例題223 3本の接線が引けるための条件 (1) |曲線C:y=x+3x2+xと点A(1, α) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 1 本〔類 北海道教育大] 基本 218 -1)-8=-8 から パー 芹求めよ。 「指針3次関数のグラフでは、接点が異なると接線が異なる(下の検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける ・曲線C上の点 (t + 31+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, における接線の方程式を求め,これが点 (1, a) を +362+t) 通ることから, f(t) =αの形の等式を導く。 。 ********* CHART 3次曲線 接点 [接線] 別なら 接線[接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, ピ+3t2+t) に おける接線の方程式はy-(t+3t+t)=(3t2+6t+1)(x-t) y=(3t2+6t+1)x-2t-3t2 すなわち この接線が点 (1,α)を通るとすると -2°+6t+1=α ① 定数 αを分離。 f(t)=-2t+6t+1 とすると Fit Maasto f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とすると f(t) の増減表は次のようになる。 t=±1 ( t f'(t) f(t) -1 1 0 + 0 極小 極大 7 -3 5 ... - 5 1 -1/0; 1 y=a t |y=f(t) 3次関数のグラフでは、 接点が異なると接線が異なるから, の3次方程式 ①が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 <f(-1)=2-6+1=-3, f(1)=-2+6+1=5 < ① の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α,β (αキβ)で接すると仮定すると g(x)−(mx+n)=k(x-a)²(x−ß)² (k=0) ←接点⇔重解 の形の等式が成り立つはずである。ところが、この左辺は3次式,右辺は4次式であり矛盾して いる。よって,3次関数のグラフでは, 接点が異なると接線も異なる。 これに対して, 例えば4次関数のグラフでは, 異なる2点で接する直線がありうる ( 前ページの 演習例題222 参照)。 したがって,上の解答の の断り書きは重要である。 練習点A(0, α) から曲線 C:y=x-9x2+15x-7に3本の接線が引けるとき,定数 73sceto() 223 aの値の範囲を求めよ。 341 6章 3 関連発展問題 38

回答募集中 回答数: 0