学年

教科

質問の種類

数学 高校生

この問題の クケを求める問題で、何故わざわざ平行完成を行ったのでしょうか? 解説お願いします🙏

第7問 (選択問題) (配点 16) 〔1〕 太郎さんと花子さんは, 2次曲線の性質について話している。2人の会話文を 読んで,下の問いに答えよ。 太郎: 楕円は, 2定点F, F' からの距離の和が一定である点Pの軌跡だよね。 花子 : 2定点からの距離の差が一定なら双曲線になるよね。 太郎 : 放物線は,定点F と, F を通らない定直線からの 距離が等しい点の軌跡だよね。 花子 : 楕円や双曲線の定義と放物線の定義は設定が違うね。 太郎: 定点FとFを通らない定直線からの距離の比が一 定という設定にした場合どうなるか調べてみよう。 F さい。 ここで, オ コ また、 焦点の座標 (p, 0), キ のときの楕円は, 長軸の長さ 0 である。 短軸の長さ サ のときの双曲線の漸近線は, 直線 y= xをx軸方向 に シ だけ平行移動したものである。 イ I |の解答群 (同じものを繰り返し選んでもよい。) O p ① 2p ②が ③ 2p ④ (1+rz) ⑤ (12) ⑥(1-r) ⑦ オ キ の解答群 (同じものを繰り返し選んでもよい。) 方程式は (1) F(c, 0, F'(-c, 0) のとき, 2定点F, F' からの距離の和が2αである楕円の 0 r>1 ① 0<r<1 (2 r=1 ク コ の解答群 (同じものを繰り返し選んでもよい。) Q2 62 =1 ただし, b2= ア の解答群 10~0 a²+c² a²-c² ②√a²+c² 2 サ 2pr 2pr 1-2 ① 1+re 2pr √1+22 2pr ③ √1-22 p(1+r2) p(1-2) p(1+r²) p(1-r²) B 1-2 (5 1+2 √1-2 √1+22 の解答群 (同じものを繰り返し選んでもよい。) Þ √2+1 ① re-1 (3 1-re 1+re (2) 太郎さんと花子さんは定点と定直線からの距離の比が一定という設定にした場 合どうなるかを調べることにした。 すると,そのような設定の場合も2次曲線に なり,比によって, 2次曲線の形が決まることが分かった。 p > 0, r>0 とする。 点F (p, 0) からの距離とy軸からの距離の比がr:1で ある点P(x, y) の軌跡の方程式を求めると (数学Ⅱ・数学B 数学C第7問は次ページに続く。) イ 2_ x+y2 =0 となるから オ のとき,楕円を表し、 カ のとき, 放物線を表し, キ のとき, 双曲線を表す。 (数学Ⅱ・数学B 数学C第7問は次ページに続く。 数学Ⅱ・数学B 数学 C-16 数学Ⅱ・数学B 数学 C-15

解決済み 回答数: 1
数学 高校生

赤線の部分で恐らく二乗していると思うのですが、 座標の二乗(大きさ)ってルートがつきますよね? なんでルートがつかないで絶対値がはずれてるんですか?

で表 156 ベクトル方程式 (II) (1) Car 4点0(0,0), A(3,0), B(2,2), C (4,1) が与えられている. P(x,y) が 3OP-OA-OB-OC =3 をみたしているとき, xyのみたす方程式を求めよ. 精講 MARC 08 05 (2) 155 と同様に考えていけばよいのですが, 変数が入っているわけ ではありませんから、少しやりやすいと思います。 解 30P-OA-OB-OC=3(x, y)-(3, 0)-(2, 2)-(4, 1) |(x-3, y-1)|=1 =3(x-3, y-1) (別解) 与えられた条件式を3でわると 1 (x-3)2+(y-1)2=1 M1400-G OP-OA+OB+OC 3 =1, △ABCの重心をGとすると, OP-OG|=1 .. |GP|=1 142 よって,PはGを中心, 半径1の円周上を動く. (上図参照) G(3, 1) だから,Pの軌跡の方程式は (x-3)2+(y-1)²=1 注 このように「おきかえることによってベクトルの数を減らす」こ とが非成分タイプの軌跡では基本方針になります(演習問題156) ポイント 点Cを中心とする半径の円周上の点Pは 演習問題 156 S |CP|=r をみたす 平面上に4点0,A, B, C があり, CA+2CB+3CO=0をみた している。このとき. 次の問いに答えよ. (1)=OA, OB とするとき, OC を とで表せ (2) 線分OBを12に内分する点をDとおくとき,ODをで表せ (3) AがOを中心とする半径12の円周上を動くとき、点Cの軌跡

解決済み 回答数: 2
数学 高校生

重要例題111の類題としてpractice111を解こうと思ったのですが、どのように解いたらいいですか?? ℓtをtについて整理して、二次方程式をつくる所まではやってみたので、その先を教えていただきたいです! どなたか分かる方教えてください!!🙇‍♀️

178 重要 例題 111 直線が通過する領域 を実数の定数とする。 直線 2kx+y+k=0... ① について、 ての実数値をとって変わるとき, 直線 ①が通る領域を図示せよ。 ①について、んがすべ CHART & SOLUTION 直線が通過する領域 実数 k が存在する条件をx, y で表す...... 直線 ①が点(x, y) を通る⇔ ①を満たす実数が存在する ①をkについての2次方程式とみて、次の同値条件からxとyの関係式を求める。 2次方程式が実数解をもつ ⇔ 20 別解 解答 2変数 x,yのうち,まず,xの値を x=tと固定して,yのとりうる値の範囲を める。 その後,tの値を動かしてみる。 ①をkについて整理すると k2+2xk+y=0 ② 直線 ①が点(x, y) を通る条件は,②を満たす実数kが存在 することである。 kの2次方程式 ②の判別式をDとすると D= x²-y y 大量 y=x2 4 OD≧0 から したがって, 直線 ①が通る領域は, 放物線 y=x2 およびその下側の部 分で,図の斜線部分。 ただし, 境界 線を含む。 INFORMATION 法 ← ② を満たす実数 在しないとき が点(x, y) を通 はできない。

解決済み 回答数: 1
数学 高校生

(3)を解いてみました。私の解答でmの存在条件を考える時、 2m=Xと-8m=Y の両方の条件を使えばいいのか、 またはどちらかを使えばいいのか分かりませんでした。

ヨチェク ①8/130 to 212 12 軌跡 / パラメータを消去 座標平面上に直線1:y=mz-4mと放物線y=1がある.mは,IとCが異なる2点P, Qで交わるような値をとるとする.また, 線分 PQ の中点をMとする. (1) 1はmの値にかかわりなく、 ある定点を通る。 この点の座標を求めよ。 (2) m のとりうる値の範囲を求めよ. (3) Mの軌跡を求め, 座標平面上にそれを図示せよ。 (南山大 外国語, 法) 軌跡の素朴な求め方 動点の軌跡の素朴な求め方は,動点M(X, Y) を原動力 (本間ではm, 以下 パラメータと呼ぶ) で表して, それがどんな図形であるかをとらえる方法である。 直接読み取れること もあるが、一般的には,パラメータによらないXとYの関係式 (パラメータを消去した式) を作ること で、 軌跡の方程式を求めることになる。 なお、 実際にはXとYの関係式を作るとき、必ずしもX,Yを パラメータだけで表した式を用意する必要はない. 本間の場合 「Mが上」 に着目するのがうまい。 「軌跡」 と 「軌跡の方程式」 問題が「軌跡を求めよ」という要求なら, 軌跡の限界 (範囲: 不等式) を考慮しなければならないが,「軌跡の方程式を求めよ」 という要求ならば、その必要はなく、単に方程 式 (等式)を求めるだけでよい,というのが慣習である。 本間 (3) の場合 Mのx座標は,解と係数の関係を使う. y座標は1の式から (2) にも注意. 解答量 (1) 直線/は,y=mx-4m ①の右辺をmについて整理して,y=m(x-4) これは定点 (40) を通る. (2) y=1/2と①を連立して得られる方程式 ・① M C 1なければ主と 依存して パラメータでおし 1 r²-mx+4m=0· ・② 4 x 4 a XOB が異なる2つの実数解を持つ. 判別式をDとすると, D=m²-4m>0 m <0 または4<m (3) P,Qの座標をα βとし, M(X, Y) とおくと, X=- a+B 2) ・・・③ これから軌跡の限界が出てくる. PQの座標をm で表す必要はな い。 このようなときは具体化を 急がず、とりあえず文字でおく α, βは②の2解であるから,解と係数の関係により, a+β=4m よって、X=2m であり,Mは①上にあるから,Y=mX-4m⑤⑤ではなく、 =1/2で、⑤に代入しY=1/2x2-2x ④よりm= ③ ④ により,X < 0 または 8 < X X,Yをx, y に書き換え, 求める M の軌跡は 1 y= x²- ーー2x (x<0または8<x) であり, 右図太線である (○を除く)。 16 y=x²-2xy=- 04 8 x 1/2 B2 4 (a+8)2-2aß JA8 =2m²-4m と ④ から Y を X で表しても大し たことはないが (本間の場合), ⑤ (直線上にあること)に着目す るのがうまい人、 12 演習題(解答は p.104) 円 (x-2)2+y2=1と直線y=mz が異なる2点P Qで交っているとき, (1) m の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は 今の座標を明示せよ ). (群馬大・理工, 情/改題) Mが直線上にあること をうまく使う なお、図 形的に解くこともでき る. 91

回答募集中 回答数: 0