学年

教科

質問の種類

物理 高校生

名問の森の質問です。 (2)の解説部分の赤線がなぜなのかいまいちよく分かりません。教えてください🙇‍♀️

BxX 31 直流回路 電圧 100Vで使用すると, 80 W を消費する電球 L と, 40W を消費 する電球 M がある。 L, Mにかかる電圧 V〔V〕 と,電球を流れる電流 I〔A〕との関係を示す特性曲線は図1のようである。有効数字2桁で 答えよ。 19/9 名 00(1) Lに電圧 80Vをかけて使用するとき,Lの抵抗値はいくらか。ま た,消費電力はいくらか。 × (2) Lを電圧 100Vで使用しているとき,Lのフィラメントの温度は いくらか。ただし,抵抗の温度係数を2.5×10-3/℃ 室温を0℃と する。また,図1の点線はLの特性曲線の原点における接線を示す ものとする。 だから (3)図2において,Eは内部抵抗の無視できる起電力 120V の電池 Rは100Ωの抵抗である。 L を端子 XY間に連結して使用すると きLの電圧と消費電力はいくらか。ば (4)Lと100[Ω] の抵抗3本を並列にして(図3), 図2のXY間に連 結して使用するとき,Lにかかる電圧はいくらか。 × (5) LとMを並列にして、 図2のXY間に連結して使用するとき, L の消費電力はいくらか。 また, 回路全体での消費電力はいくらか。 Level (1) ★ (2) (3) (4) (5) Point & Hint Poji[C]での抵抗値は0袋)の (2)(4は抵抗の温度係数)が漁費電力 31 105 民として、R=R(1+al)と表され が大きいほど高温になる。つまり、グラ フの右上に向かって温度が高くなっている。 すると室温はどのあたりか。 706 図1を生かしたいのでにかかる圧を流れる電流を」として、キル ヒホッフの法則で関係式をつくる。一種の連立方程式の問題だが, グラフ上で解 くことになる。 (5)LとMを1つの電球とみて特性曲線をつくってみる。 LECTURE (1) 図1より V = 80[V] のとき I=0.7 〔A〕 の電流が流れるから, オーム の法則 V=RI より抵抗値 Rは R= == 80 0.7 ≒1.1×102 [Ω] 消費電力は VI = 80×0.7=56 〔W〕 RI2を用いてもよいが, VI ならダイレクトに計算できる。 10 M+J (2)V=100 〔V〕 のとき, I = 0.8 〔A〕 だから VOST V 100 R= == =125 [Ω] I 0.8 室温0℃はジュール熱の発生が無視できる原点近くの (VIが0に近い) 状態である。 [℃] での抵抗値 R のまま一定を保てば, 特性曲線は点線の 20 0.4 0.2 I[A] 1.2 225 1.0 0.8 0.6 Y 120V 100Ω RATE 図2 L IM 091 0 0 20 40 60 80 100 120 100Ω V(V) 図1 図3 ような直線となるはずだから Ro=1.0=20[Ω] よって, 求める温度を t [℃] とすると 点線のどこを 3. |使ってもよい 125 = 20 × ( 1 + 2.5 × 10-3t) .. t = 2.1×103 [℃] (3)Lの電圧、電流をV, I とすると, キルヒホッフの法則より 120 100I+V ・・・・・・ ① この関係を満たす V. Iは次図の直線(実線) で表される。 Lの特性曲線との交点が求める答 えだから V = 60[V] I = 0.6 (A) 消費電力はVI=60×0.6=36〔W〕 式①をグラフ化するとき 1次式だから直線 100Ω 120V 図 a

解決済み 回答数: 1
数学 高校生

赤い印のところがわかりません。 logxをxで微分したらx'/xになるのはわかるのですがlogyをxで微分してもy'/yになるのはなぜですか?logyにxは入っていないので0になると思ったのですが、、、

白で書 110 例題 準 62 対数を利用する微分 関数 4 x" y= Vx +1 を微分せよ。 CHART & GUIDE (C) 累乗の積と商で表された関数の微分 両辺の対数をとって微分する 1 両辺の絶対値の自然対数をとる。 2 対数の性質を用いて,積を和, 商を差の形に,指数は前に出す。 3 両辺をxで微分する。 4 y'′ を求める。 <<<基本例題61 i 000 解答 x4 x x" log| =log| 白 x+1 x+1 3 -10g|x+1| から, 関数の両辺 <<log M=klog M の絶対値の自然対数をとると 10800x ! log|y|=1/1/1 (410g|x|-log|x+1) 3 M N log = logM-logN 書い この式の両辺をxで微分するとュ)-(1. y' 1 y 3x 1 x+1 4(x+1)-x3 1 3 x(x+1) 3x(x+1) 3x+4 ←(log|y|)'=" y よって y=x3x+4 x(3x+4) 前ページ Lecture 参照 = x+13x(x+1) 3(x+1)x+1 分母を3(x+1)* とし してもよい。 Lecture 対数微分法 対数には,logMN=logM+logN, log = logM-logN, xol M N log M=klog M の性質があるから,複雑な積, 商累乗の形の関数の微分では,両辺(の絶対値)の自然対数を ってから微分する (対数微分法という)と、計算がらくになることがある。 また、例題の関数の定義域には, x<0 を含むから, 両辺の自然対数を考えるときは絶対値を とってから自然対数をとっていることに注意しよう。 なお, αを実数とするとき (x)'=ax-1 (x>0) が成り立つ。このことは, 対数微分法を用 て,次のように証明される。 証明 y=x の両辺の自然対数をとると logy=alogx 両辺をxで微分すると y=a.- 1 y よって(x)'=y=uy=a x x x TRAINING 62 ③ ←x>0 であるからy>0 xa =axa-1 次の関数を微分せよ。 (1)y=xx (x>0) (2) (x+2)4 (3) y=3√x²(x+1)

解決済み 回答数: 1