学年

教科

質問の種類

数学 高校生

数学についてです 赤線で引いてある部分がよくわかりません なぜ余りを割るという操作をするのかわからないです 具体例など出してくださると嬉しいです わかる方お願いいたします。

基本 例題 56 剰余の定理利用による余りの問題 (2) 多項式P(x) を x+1で割ると余りが-2, x2-3x+2で割ると余りが-3x+7 であるという。このとき,P(x) を (x+1)(x-1)(x-2) で割った余りを求めよ。 指針 例題 55と同様に、割り算の等式 A=BQ+R を利用する。 基本55 重要 57 3次式で割ったときの余りは2次以下であるから,R=ax2+bx+cとおける。 問題の条件から、このα,b,c の値を決定しようと考える。 別解 前ページの別解のように,文字を減らす方針。 P(x) を (x+1)(x-1)(x-2) で割ったときの余りを,更にx3x+2 すなわち (x-1)(x-2) で割った余りを考 える。 P(x) を (x+1)(x-1)(x-2) で割ったときの商をQ(x), 解答 余りをax2+bx+c とすると,次の等式が成り立つ。 ...... P(x)=(x+1)(x-1)(x-2)Q(x)+ax2+bx+c ここで,P(x) を x+1で割ると余りは−2であるから ② P(-1)=-2 ① 3次式で割った余りは, 2 次以下の多項式または定 数。 また,P(x) を x-3x +2 すなわち (x-1)(x-2) で割った ときの商をQi(x) とすると B=0 を考えて x=-1, 1,2 を代入し, a, b, cの値 を求める手掛かりを見つ ける。 P(x)=(x-1)(x-2)Q1(x)-3x+7 ゆえに P(1)=4 ...... ③, P(2)=1 ...... ④ よって, ①と②~④より a-b+c=-2, a+b+c=4,4a+26+c=1 この連立方程式を解くと a=-2,6=3,c=3 したがって 求める余りは (第2式) - (第1式) から 266 すなわち 6=3 (2) 指 2x2+3x+3 別解 [上の解答の等式① までは同じ ] x2-3x+2=(x-1)(x-2) であるから, (x+1)(x-1)(x-2)Q(x)はx-3x+2で割り切れる。 ゆえに,P(x) をx2-3x+2で割ったときの余りは, ax2+bx+cをx2-3x+2で割ったときの余りと等しい。 P(x) をx2-3x+2で割ると余りは-3x+7であるから ax2+bx+c=a(x2-3x+2)-3x+7 よって,等式①は,次のように表される。 P(x)=(x+1)(x-1)(x-2)Q(x)+α(x2-3x+2)-3x+7 したがって P(-1)=6a+10 P(-1)=-2であるから 6a+10=-2 よって a=-2 求める余りは-2(x2-3x+2)-3x+7=-2x+3x+3 この解法は、下の練習56 を解くときに有効。 ax2+bx+c を x2-3x+2で割ったとき の余りをR(x) とすると 商は αであるから P(x) (水) =(x+1)(x-1)(x-2)Q(x) +α(x2-3x+2)+R(x) =(x2-3x+2) {(x+1)Q(x)+α}+R(x)

未解決 回答数: 1
数学 高校生

この式がなんでこうなるか分かりません!! 教えてください🙇‍♀️

109 導関数の定義 びばん (1)(x)のx=1における微分係数が存在するとき,lim (1), f'(1) で表せ. f(x)-x³f(1) (2)f(x)=x2 のとき,定義に基づいて導関数 f(x) を求めよ. x-1 を ( 明治大 / 佐賀大) (解答 f(x)-xf(1) (1) lim- x→1 x-1 = =lim f(x)-f(1)xf(1)+f(1) | f(x)=(1) x³-1. f(1) = lim →1 x-1 =lim- x→1 f(1) f (1) は打ち消される |f(x) = f(1) = (x-1)(x²+x+1). (1) x-1 f(x)-f(1) -lim(x2+x+1).f(1) x-1 x→1 =f'(1)-(1+1+1)f(1) =f'(1)-3f(1) このときを x+h とすると, f(x+h)=(x+h)2 である (2) f(x)=x2 のとき, 000023 f(x+h)-f(x) (x+h)2-x2 2xh+h2 f'(x)=lim =lim -=lim -=lim(2x+h)=2x ん→0 h h→0 h h→0 h h→0 解説講義) f(b)-f(a) xがαから6まで変化するときの平均変化率は であり、 微分係数 f(a)はこの b-a f'(1)=lim 式でb を αに近づけたときの極限で,f'(a)=lim- f(b)-f(1) f(b)-f(a) b-a b-a ・・・① である. ここでα=1にすると, b 1 b-1 であり, b をxに書きかえるとf' (1)=lim- *→1 x-1 f(x)-f(1) となる.(1)では これを用いた.なお, 微分係数の定義である① は, b=a+hと置きかえて f(a)= lim- f(a+h)-f(a)...② と書かれることも多い h→0 h ②でαをxに書きかえると導関数 f(x) の定義になる.つまり, f'(x)=limf(x+h)-f(x) である. h→0 h (2)では「定義に基づいて f'(x) を求めよ」と要求されているから、この定義を用いて計算 していないものは0点である.ただし, 微分する (導関数を求める)ときに、毎回このような 計算をしていたら大変である.そこで, n=1, 2, 3, に対して, f(x)=x" のとき,f(x)=x1 ということを「公式」として,単に微分するだけのときは,「f(x)=x2 のとき,f(x)=2x」と アッサリやればよい. 文系 数学の必勝ポイント・ 導関数f'(x)の定義 関数 f(x) に対して,導関数f(x) == lim f(x+h)-f(x) である h

未解決 回答数: 1