学年

教科

質問の種類

日本史 高校生

この答え持ってる方いたら教えてください!

STAGE A 用語チェック 旧石器文化 縄文文化 ① 氷河時代ともよばれる,約1万年前までの時代を地質学では何というか。 ② 1946年に相沢忠洋によって発見された, 群馬県の旧石器時代の遺跡名を答えよ。 ③ 旧石器時代の終わりごろ広まった, 木などに埋め込む組合せ式の石器を何と いうか。 ④ 北海道白滝や長野県和田峠などで産出される石器の原材料を答えよ。 もり ⑤ 動物の骨や角から作られた釣針や銛などを何というか。 ⑥地面を掘り、柱を立てて屋根をかけた縄文時代の住居を何というか。 ⑦ 縄文時代の女性をかたどった人形を何というか。 あらゆる自然物や自然現象に霊威を認める考え方を何というか。 ⑨ 死者の霊を恐れ, 手足を折り曲げて埋葬する方法を何というか。 農耕文化の成立と小国分立 ① 縄文晩期の水田跡が発見された福岡県の遺跡名を答えよ。 ② 石包丁による稲の収穫方法を何というか。 ③ 収穫物を保存するために作られた, 床の高い建物を何というか。 ほり ④ 戦いに備え, 周囲を濠や土塁で防御した集落を何というか。 ⑤ 九州北部で見られる, 大きな石をいくつかの石で支えている墓を何というか。 ⑥ 弥生時代の青銅製祭器のうち, 近畿地方を中心に分布するものは何か。 ⑦ 紀元57年に中国の皇帝から印綬を授けられたのは倭の何という国か。 ⑧ 江戸時代に⑦の印綬が発見された志賀島は、 今の何県にあるか。 ① ② ③ ⑤5 6 (7) ⑧ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧8 ⑨ ⑨ 邪馬台国の卑弥呼が中国の皇帝からおくられた称号は何か。 3 古墳文化とヤマト政権 ① 古墳の形で最も重要とされ, 大規模古墳に採用されている墳形は何か。 ② 古墳の墳丘上に並べられた, さまざまな形の素焼きの土製品を何というか。 ③ 古墳時代前期・中期の石室の形状を何というか。 ④ 仁徳天皇陵とされる, 大阪府堺市にある最大規模の古墳名を答えよ。 ⑤ ヤマト政権が朝鮮半島南部に進出して求めた資源は何か。 ① 2 ③ ④ 5 ⑥ 391年にヤマト政権が交戦した朝鮮半島の国はどこか。 6 ⑦ 古墳時代後期に見られる一か所に集まった多数の小古墳群を何というか。 豊作を神に祈る春の祭りを何というか。正面 7 ⑧⑧ □ ⑩ 埼玉県・稲荷山古墳の鉄剣銘や熊本県・江田船山古墳の鉄刀銘に見られる 熱湯に手を入れさせただれたかどうかで真偽を判断する裁判を何というか。 9 10 「獲加多支鹵大王」にあたる天皇は誰か。 11 17世紀中ごろから近畿の大王の墓に採用された墳形を何というか。 12 血縁を中心に大王によって編成された豪族の同族集団を何というか。 13 豪族の政権内での地位や職務に応じて、大王が与えたものを何というか。 146世紀初めに新羅と組んでヤマト政権に反乱を起こした人物は誰か。 15 大王が日本各地に設けた直轄地を何というか。 ⑩6 有力豪族の私有地を何というか。 12 13 14 15 16 5

回答募集中 回答数: 0
数学 高校生

場合の数の質問です 赤線で引いた所が分かりません どうして×3なんですか

346 基本 (全体) (・・・でない)の考えの利用 00000 大 中 小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。 [東京女子大] 目の積が4の倍数」を考える正攻法でいくと, 意外と面倒。そこで, として考えると早い。ここで、目の積が4の倍数にならないのは、次の場合である。 目の積が4の倍数)=(全体)-(目の積が4の倍数でない) [1] 目の積が奇数 3つの目がすべて奇数 2つは奇数 [2] 目の積が偶数で 4の倍数でない→偶数の目は2または1つだけで、他の CHART 場合の数 目の出る場合の数の総数は 早道も考える (Aである) = (全体) (Aでない)の活用 6×6×6=216 (通り) 解答 目の積が4の倍数にならない場合には,次の場合がある。 [1] 目の積が奇数の場合 3つの目がすべて奇数のときで 3×3×3=27 (通り) [2] 目の積が偶数で, 4の倍数でない場合 積の法則 (6" と書いてい よい。) 数どうしの種は 1つでも偶数があれば 積は偶数になる。 3つのうち、2つの目が奇数で、残りの1つは2または64が入るとダメ。 の目であるから (32×2)×3=54 (通り) [1] [2] から 目の積が4の倍数にならない場合の数は 27+54=81 (通り) よって、目の積が4の倍数になる場合の数は 216-81=135 (通り) 目の積が偶数で4の倍数でない場合の考え方 和の法則 (全体)・・・でない) 基本 500円 で、 いも 指針 解答 上の解答の [2] は,次のようにして考えている。 検討 大中小のさいころの出た目を (大,中,小) と表すと, 3つの目の積が偶数で、4の倍数 にならない目の出方は,以下のような場合である。 (大,中,小) = (奇数, 奇数, 2 または 6 ) 3×3×2 通り よって =(奇数 2 または 6 奇数) 3×2×3 通り =(2または6, 奇数,奇数) 2×3×3 通り (32×2)×3通り 参考目の積が4の倍数になる場合の数を直接求めると,次のようになる。 (i) 3つの目がすべて偶数 33通り 2つの目が偶数で, 残り1つの目が奇数 (32×3)×3通り 合わせて 27+81 +27 (1つの目が4で、 残り2つの目が奇数 → → (1×32) ×3通り」 =135(通り) 練習 大,中,小3個のさいころを投げるとき,次の場合は何通りあるか。 ③9 (1) 目の積が3の倍数になる場合 (2)目の積が6の倍数になる場合 p.357 EX81 検

未解決 回答数: 1
数学 高校生

数IIサクシード 不等式の表す領域400 不等式の表す範囲、グラフは書けたのですが、全ての組み合わせを書くとなると、領域ギリギリのところを見落としたり、余分に数えたりすることが多いです。正確に全て書くコツや見落としていないか確認する方法はありますか?

>0 すなわ y- x+. 8-5 K1 -2 分である。 直線 BC の方程式は 直線 CA の方程式は x=-3 y=-3-2 -1-0 (x-2) -60 すなわち y=- 1 2 1≤0 -2 rec A, B, C を頂点とす る三角形の内部および 周上は,右の図の斜線 部分である。 ただし, 境界線を含む。 B 3 ある。 この斜線部分は, 直線ABの下側, C -1A 直線 BC の右側, 直線 CA の上側, の共通部分である。 80 x=2のとき,①,②から y² <4, y>- これを満たす整数yは y = 0,1 y2<1,y>0 x=3のとき,①,②から これを満たす整数y は存在しない。 よって、求める整数 ( x, y)の組は T-1, 0), (0,1),0,0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) 401 (1)xy>1から x-y<-1 または 1<x-s すなわち y>x+1 または y<x-1 よって,求める領域は 〔図] の斜線部分である。 ただし、境界線を含まない。 (2)x+y≤1 …………… ① x0,y≧0のとき,①は x+y≤1 よってy≦-x+1 x0,y<0 のとき,①は x-y≤1 よってy≧x-1 x< 0, y≧0 のとき,①は よって, 求める連立不等式は x+y よって y≦x+1) y- [y≤ -1x+ 4 8 x < 0, y<0 のとき,①は 5 x≧-3 (4x+5y-8 10+よって y≧-x-1 すなわち x+3≥0 ゆえに、求める領域は [図] の斜線部分である。 ただし,境界線を含む。 大 1 2 x-5y-2 この図の斜線部分1 (2) (1) 400 x2+y2-2x-4<0から +2 (x-1)2+y2<5 >4 x-2y-3<0から 3 y> 2x-2 ② よって, 与えられた不 等式の表す領域は,右 の図の斜線部分である。 ただし,境界線を含ま ない。 1-√5 図から 1-√5 <x<1+√5 これを満たす整数xは x=-1のとき, ①,②から これを満たす整数yは x=-1, 0, 1,2,3 x=0のとき, ①,② から これを満たす整数y は x=1のとき, ①,② から これを満たす整数 yは ① −10 -1 y2<1,y>-1 y=0 <4,y> / y=-1, 0, 1 y2<5, y>-1 y=0, 1, 2 402 指針 直線 y=ax + b が2点 P, Q を結ぶ線分 PQ と 両端以外で交わるとき, 右の図からわかるよう に, 2点P, Qは,直線 y=ax+bに関して反対 側にあるから、点P, Q y y>ax+b Q x <ax+b の 一方がyax+b の表す領域, 他方がy <ax+b の表す領域 にある。 条件を満たすのは、2点P,Qのうち,一方が直 線 y=ax+b の上側,他方が下側にあるときで ある。

未解決 回答数: 1