学年

教科

質問の種類

数学 高校生

青の所がどうなっているのか解説お願いします🙇‍♂️

95 接線の本数 曲線 C: y=x-x上の点をT(t, t-t) とする. (1)点Tにおける接線の方程式を求めよ. (2)点A(a, b) を通る接線が2本あるとき, a, b のみたす関係式 を求めよ. ただし, a > 0, b≠α-a とする. (3)(2)のとき,2本の接線が直交するようなα, bの値を求めよ. a=0 1g(0)g(a)=0 a=0 (a+b)(b-a+α)=0 < α≠0 は極値をもつ ための条件 b≠a-a,a>0 だから, a+b=0 (3) (2) のとき (*)より, t2(2t-3a)=0 3a 2本の接線の傾きはf'(0), (22) だから,直交する条件より f'(0) (3a .. 8 =-1 a²=-27 _2√6, (-1)(2762-1)--1 「 a>0より, a= 2√6 b=- 9 9 精講 (2) 3次関数のグラフに引ける接線の本数は, 接点の個数と一致し ます. だから、(1)の接線にA(a, b) を代入してできるt の3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 94 注で学習済みです. (3)未知数が2つあるので, 等式を2つ用意します。 1つは(2)で求めてあるので, あと1つですが, それが 「接線が直交する」 を式にしたものです. 接線の傾きは接点における微分係数 (83) ですから, 2つの接点における 微分係数の積=-1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと, f'(x)=3.-1 よって, Tにおける接線は, y-(t³-t)=(3t2-1)(x-t) ∴y=(3t-1)x-2t3 (2)(1) の接線はA(a, b) を通るので b=(3t2-1)a-2t3 :.21-3at+a+b= 0 ...... (*) (*) が異なる2つの実数解をもつので, g(t)=2t3-3at+a + b とおくとき, y=g(t) のグラフが, 極大値, 極小値をもち, (極大値)×(極小値) = 0 であればよい. g'(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから ・極値をとるためには2つ必要は0ではない (a 0) 点Aを通る接線が2本ある 接点が2個ある 185 接点が2個ある時の3次関数の特徴は? 大値 or 極小値が0をとる。 . よって 極大値×極小値 0 が成り立つ。 y=x³-x A(a,b), 94注 参考 ポイント 3次関数のグラフに引ける接線の本数は 接点の個数と一致する 実は,3次関数のグラフに引ける接線の本数は以下のようになるこ とがわかっています. 記述式問題の検算用やマーク式問題で有効で す。 3次曲線Cの変曲点 (88) における接線をと するとき, ・斜線部分と変曲点からは1本引ける ・Cと上の点(変曲点を除く) からは2本引ける ・青アミ部分からは3本引ける IC 演習問題 95 曲線 y=x-6x に点A(2, p) から接線を引くとき, 次の問いに 答えよ. (1) 曲線上の点T(t, ピ-6t) における接線の方程式を求めよ. (2)ptで表せ (3) 点Aから接線が3本引けるようなかの値の範囲を求めよ.

解決済み 回答数: 1
数学 高校生

0<t<6になるのは何故ですか? 内接しているのは4つ角のみですよね?

めよ。 項 3 ■最 意。 日本 187 最大・最小の文章題(微分利用) 00000 半球に内接する直円柱の体積の最大値を求めよ。 また, そのときの直 円柱の高さを求めよ。 CHAT & SOLUTION 文章題の解法 Wom 最大・最小を求めたい量を式で表しやすいように変数を選ぶ 円柱の高さを、例えば 2t とすると計算がスムーズになる。 変数のとりうる値の範囲を求めておくことも忘れずに。 このとき、直円柱の底面の 半径は62-12 面積はπ(√62-122(36-12) したがって、直円柱の体積はtの3次関数となる。 基本186 3 2 開答 02t<12 直円柱の高さを 2 とすると 0<t<6 ある 含ま 最 るまと と 直円柱の底面の半径は √62-12 て ◆三平方の定理から。 ここで,直円柱の体積をyとすると y=(v36-12)2.2t =(36-t2)・2t=2π(36t-t3) を tで微分すると y'=2z(36-3t2)=-6(-12) =-6(t+2√3) (t-2√3) 0<t<6 において, y'=0 となるの (直円柱の体積) _=(底面積)×(高さ) dy y'で表す。 dt #P はt=2√3 のときである。 よって, 0<t<6 におけるy の増減表は右のようになる。 ゆえに,yt=2√3 で極 大かつ最大となり、その値は 2{362√√3-(2√3)}=2.2√3(36-12)=96√3 また、このとき,直円柱の高さは t 0 23 6 定義域は 0<t <6 であ るから,増減表の左端, v' + 0 y > 極大 2.2√3=4√3 したがって 最大値 96√3 π, 高さ 4√3 右端のyは空欄にして おく。 t=2√3 のとき √62-12=2√√6 よって、 直円柱の高さ。 底面の直径との比は 4√3:4√6=1: 2 百太限

解決済み 回答数: 1
数学 高校生

微分の問題なのですが、解説には異なる3つの実数解を持たないことが条件だと書いてありますが、2つや1つの場合でも極大値が存在してしまうのではないかと思いました。教えて頂きたいです。

点線をつくらないようにする 重要 例題 218 4次関数が極大値をもたない条件 00000 | 関数f(x)=x^-8x3+18kx2 が極大値をもたないとき 定数の値の範囲を求め よ。 4次関数 f(x) がx=pで極大値をもつ 指針 [福島大] 基本 211 214 347 万物 であるから, f'(x) の符号が「正から負に変わらない条件を 考える。 3次関数f(x)のグラフと x軸の上下関係をイメー x=pの前後で3次関数ff'(x)の符号が正から負に変わる f(x)+ x ... Þ 0 f(x) \ ジするとよい。 なお、解答の右横の図はy=x(x2-6x+9k) のグラフである。 解答 f'(x)=4x-24x2+36kx=4x(x-6x+9k) ←口以上 あるこのとろ 本にな k≥1 k>1 f(x) が極大値をもたないための条件は,f(x)=0 の実数 解の前後でf'(x) の符号が正から負に変わらないことであ る。このことは,f'(x)のxの係数は正であるから,3次 方程式f'(x)=0 が異なる3つの実数解をもたないことと 同じである。 もし3つの解をもって必ず極大値が存在する。 x=0 または x2-6x+9k=0 f'(x) =0 とすると よって、 求める条件は, x2-6x+9k=0が [1] 重解または虚数解をもつ [2] x=0 を解にもつ [1] x2-6x+9k=0 の判別式をDとすると k=0 YA k=1 4つの解が 出てこなけ ればOK. 3 x 0 ars D≦0 D =(-3)2-9k=9(1-k)であるから 30 1-k≤0 よって は、 k≧1 6/ x 6 章 虎or [2] 2-6x+9k=0にx=0 を代入すると ●ゆるカーブしたがって k=0 極地 k=0, k≥1 グラフの増減が 入れ替わること、 (ポイント) f(0)が異なる3つの 4x(x2600+91) 解を1つだけにすればよい 解をもつことが 条件 一般に 4次関数 f(x) [4次の係数は正] に対し、f'(x) = 0 は のが数で 30

解決済み 回答数: 2
数学 高校生

☆数2です☆ (2)でx=2の時で極値をとらないのかがわかりません。どなたかよろしくお願いします🙇‍♀️

195 次の関数のグラフをかけ. (1)y=3x+4x²-12x2+16 y'の符号を調べて、 増減表をかけばよい. 考え方 4 次以上の関数のグラフも, 3次関数のグラフと同様 y'=0 を満たすxの値を求めるときは、因数定理など を利用しよう.(p.113,120 参照) (1)y=3x+4x-12x2+16 より 答 5001y =12x³+12x²-24x 01201 4 次関数のグラフ ocus 1² y'=0 とすると, したがって、yの増減表は次のようになる. y+ =12x(x2+x-2)=12x(x+2)(x-1) x=-2, 0,1 1 0 y 極小 11 x=-2のとき, 極小値-16 x=0のとき, 極大値 16 x=1のとき、極小値 11 よって, グラフは右の図の ように. (2)y=-x^+4x-16x+4 より, y'=-4x+12x²-16 y -2 0 極小 -16. ... 20 極大 15 + 0 ... 下 0 極大 16 (1) (2)y=-x'+4x-16x+4 =-4(x3-3x²+4)=-4(x+1)(x−2)² y'=0 とすると, x=-1,2 したがって,yの増減表は次の ようになる。木 -1 2 0 -12 x=-1のとき,極大値 15 闘よって、 グラフは右の図の ようになる 習 次の関数のグラフをかけ. 251 ... 16 10 01 -16 12 <関数のグラフ> y'の符号,極値の存在 を確認して、 増減表 x M $SYJS (> 15 2 **** x x=-2 と x=1の 2箇所で極小値をも つ. )x(8-1)X(1- グラフをかく増減表を作り、極値,y切片を求める 379 3次式の因数分解は p. 120 参照 x=2では極値をもた ない. (2) y=-x¹+6x²-8x-5

解決済み 回答数: 2