学年

教科

質問の種類

化学 高校生

(2)の解答は有効数字2桁なのに、(3)の解答は有効数字3桁なのは何故でしょうか。

例題2 気体の溶解度 0℃,1.01 × 10°Pa (標準状態)において, 酸素は1Lの水に 44.8mL溶ける。 次の 各問いに答えよ。 気体定数 : R = 83 × 10°Pa・L/ (K・mol) 原子量:0=16 (1) 0℃, 5.05 ×105Paで, 1Lの水に溶ける酸素は何gか。 (20℃,2.02 × 10Pa で, 1Lの水に溶ける酸素の体積は、その温度と圧力のもと で何mLか。 (3)(2)を標準状態に換算した場合、 何mLになるか。 (4) 0℃で,1Lの水に 1.01 ×105Paの空気が接しているとき, 溶解している酸素は 何gか。 ただし、空気中の窒素と酸素の体積の比を4:1とする。 ポイント 気体の溶解量(物質量または質量) は, その気体の圧力に比例する。 [解説] 0℃,1.01 × 10Pa (標準状態)において, 1Lの水 に溶ける酸素O2 (分子量32) の量は, 44.8 x 10-L 22.4L/mol = 2.00x10-3 mol 質量 : 32 g/mol × 2.00 × 10-mol = 6.4 × 10-2g 物質量: (1) 気体の溶解量(質量) は,圧力に比例するので 5.05 x 105 Pa = 0.32g 1.01 x 105 Pa 6.4 × 10-2g × umika (2) 0℃,2.02 ×105Paにおいて, 1Lの水に溶ける酸素の 物質量は, 2.00×10-3mol× 気体の状態方程式PV=nRT より, nRT P V=- 2.02 x 105 Pa 1.01 × 105 Pa 6.4 x 10-2g × 解答 (1) 0.32g ¥4.00 x 10-3mol したがって, 溶解している酸素の質量は, 202 × 10 Pa≒1.3 × 10-2g 1.01 x 105 Pa 1.01 × 105 Pa 4.00 x 10-3 mol × 8.3 × 10° Pa・L/(K・mol) × 273K 2.02 x 105 Pa (2) 45mL 気体 溶媒 2.02×105 Pa 気体分子 =44.8mL≒45mL 〔別解〕 一定量の溶媒に溶けうる気体の体積は、測定した温度・圧力のもとでは一定である。 したがって,どのような圧力のもとでも、体積は44.8mL≒45mLとなる。 (3) 標準状態に換算するには,温度が一定であることより, ボイルの法則 PiVi = P2V2を用いる。 V=89.6mL 2.02 x 105 Pa X 44.8mL = 1.01 X 105 Pax V (4) 空気中の酸素の分圧は,体積の比が窒素 酸素=4:1であることから, 1.01 x 10 Pax. = 2.02 ×10^Pa 気体 (3)89.6mL (4) 1.3× 10-2g 3章 溶媒 TR 混合気体での各気体の溶解量は, その気体の分圧で考える。 3章 溶液の性質 25

未解決 回答数: 1
数学 高校生

なぜ二つの室の圧力が同じなのでしょうか! よろしくお願いします。

9月21日 8限目 演習問題 |1 2015 九大 図のように、 断熱材でできた密閉さ れた容器が隔壁により第1室と第2室 に仕切られている。 隔壁は各室の気密 性を保ちながら容器内を摩擦なくなめ らかに動く。 また, 隔壁を固定するこ とも可能である。 隔壁の中央部は熱を 通す素材で、それ以外の部分は断熱材 でできている。さらに, 中央部は開閉 可能な断熱カバーでおおわれており, このカバーの開閉により両室間の熱の移動を制御できる。すなわち, 断熱カバーが閉じてい いれば、両室の間に熱の移動は無く, 断熱カバーが開いていれば,両室の間でゆるやかなB. 熱の移動が可能である。 隔壁中央部の熱容量はないものとする。 第1室内にはヒーターが 設置されており, 第1室の気体を加熱することができる。 容器 第1室 ヒーター 隔壁 断熱カバー 第2室 隔壁中央部 IPA (l). 3 第1室と第2室に,気体定数をRとして定積モル比熱が 22 R である同種の単原子分子 理想気体を封入し, 次に述べるような状態変化を行った。 なお, 問題中の温度はすべて絶 対温度で与えられている。 初めの状態 A では, 隔壁は静止しており, 断熱カバーは閉じている。 このとき, 第1 室の気体の体積, 温度,圧力はそれぞれVA, TA, PA であり, 第2室の気体の体積, 溫 度,圧力はそれぞれ 3VA, TA, PAであった。 (1) 第1室の気体の物質量(モルを単位として表した物質の量) , VA, T'A' PA, R の 中から必要なものを用いて表せ。 状態 A から, 隔壁を固定し断熱カバーを閉じたままヒーターによりゆっくり第1室の 気体を加熱したところ, 第1室の気体の温度が2TA となった。 この状態を状態 B とする。 (2) 状態 A から状態 B への変化の間にヒーターが第1室の気体に加えた熱量を, VA, TA,PA, R の中から必要なものを用いて表せ。 次に, 状態 B から隔壁を固定したまま断熱カバーを開け, しばらく待ったところ, 熱 平衡に達した。 この状態を状態Cとする。 (3) 状態Cにおける第1室, 第2室の気体の温度を, VA, TA, PARの中から必要な ものを用いて表せ。 (4) 状態 B から状態 C への変化の間に第1室から第2室に移動した熱量を, VA, TA, PA, R の中から必要なものを用いて表せ。 (5) 状態Cにおける第1室の気体の圧力, 第2室の気体の圧力を、 それぞれVA, TA, PA, R の中から必要なものを用いて表せ。 再び状態 A から考える。 以後, 隔壁は自由に動けるとし, 断熱カバーは閉じている。 ヒーターによりゆっくり第1室の気体を加熱し、 総量 3PAVA の熱を加えた状態を状態 Dとする。 (6) 状態 A から状態 D への変化の間に生じた第1室, 第2室の気体の内部エネルギーの 変化をそれぞれ 4U 1, 4U2 とする。 AU1+4U2 を, VA, PA を用いて表せ。 (7) 状態 D における第1室の気体の体積をVD とし, 状態 D における第1室, 第2室の 気体の圧力をpp とする。 4U を, VA, PA, VD, PD を用いて表せ。 (8) PD を, VA, TA, PA, Rの中から必要なものを用いて表せ。 なぜ? ださい

未解決 回答数: 1
物理 高校生

この問題の解説なんですが、解説右側の6行目の右辺の分母がV’になる理由がわかりません。 はじめにフラスコ内にあった空気の質量の何倍かを問われているなら、はじめにフラスコにあった体積Vを分母にもってくるのではないのですか?

子の分子量を28, アボガドロ定数を 6.0×1023/mol, 気体定数を 8.3J/ (mol (1) 窒素分子1個の質量は何kgか。 (2) 7℃における窒素分子の二乗平均速度は何m/sか。 √249 5.0 として計算せよ。 (3) (2) の速さの窒素分子1個が, 容器の壁に垂直に弾性衝突をしてはねかえるとき, 壁に与える力積の大きさは何N・sか。 (4) 窒素分子が,(3)と同じ条件で容器の壁に衝突する。 1.0×10 Pa(1気圧)の圧力が 生じるためには、壁の面積1m²あたりに、毎秒何個の窒素分子が衝突すればよいか。 ヒント (2) 二乗平均速度√は、気体定数をR,絶対温度をT,アボガドロ定数を 例題 39 NA,分子1個の質量をmとして、ア と表される。 発展例題24 ボイル・シャルルの法則 「発展問題 297 口の開いたフラスコが,気温 〔℃〕, 圧力 p, [Pa] の大気中に放置されている。このフ ラスコをt〔℃〕までゆっくり温めた。次の各問に答えよ。 18 (1) このとき, フラスコ内の空気の圧力はいくらか。 (2) 温度が t〔℃〕 から t〔℃〕になるまでに。 フラスコの外へ逃げた空気の質量は,はじ めにフラスコ内にあった空気の質量の何倍か。 SKE 指針 一定質量の気体では,圧力か,体積 pV V, 温度 T の間に, =一定の関係 (ボイル・ シャルルの法則) が成り立つ。 フラスコの外へ逃 げた空気も含めて, この法則を用いて式を立てる。 解説 (1) フラスコは口が開いており, 大気に通じているので, フラスコ内の空気の圧 力は大気圧に等しい。 したがって〔P〕 (2) フラスコの容積をV[m²] とし, 温める前の [℃], pi [〔P〕,V[m²]のフラスコ内の空気が、 温めた後, t〔℃〕, p [Pa], V'[m²] になったと する。 ボイル・シャルルの法則の式を立てる と. 3RT Nam DIV 273+t₁ P₁V' 273 + t2 273+t2_ 273+t₁ これから, V' = VX フラスコの外に逃げた空気の体積 ⊿Vは, t₂-t₁ 4V=V'-V=Vx 273+₁ AD 温める前にフラスコ内にあった空気の質量を m, 外に逃げた空気の質量を⊿m とすると, 4m AV が成り立ち , V' m Am m VX VX - 273+t₁ 273+tz 273+t₁ t₂-t₁ 273 + t2 倍

回答募集中 回答数: 0
物理 高校生

①と②の問題で「ゆっくり加熱」や「ゆっくり冷却」とありますよね。②では定圧変化ですが、③ではそうとは限らないそうですが、これはなぜですか? またこれはピストンが仕切られているか仕切られてないかは関係しますか?

EC M/ B ARTA (20) 19 図のように両端を密閉したシリンダーが,なめら かに動くピストンで2つの部分 A, B に分けられて おり,それぞれに単原子分子理想気体が1〔mol] ず つ入れられている。 シリンダーの右端は熱を通しやすい材 料で作られているが,それ以外はシリンダーもピストンも断熱材で作られている。は じめの状態では,A, B内の気体の体積は等しく, 温度はともに To 〔K〕 であった。 次 はりあり に、 右端からB内の気体をゆっくりと熱したところ, ピストンは左向きに移動し、最終 的にA内の気体の体積はもとの半分になり,温度は T 〔K〕 になった。 気体定数を R[J/(mol・K)] として,以下の問いに答えよ。 仕切 (1)この変化の過程で,A内の気体が受けた仕事は何〔J〕か。 (2) 変化後のA内の気体の圧力は最初の状態の何倍になったか。 (3) 変化後のB内の気体の温度は何 [K] になったか。 (4) この変化の過程で, B内の気体が外部から吸収した熱量は何〔J〕か。 B 図のような2つの円筒容器 1,2, コックで連結さ (京都府大 ) 断面積S

回答募集中 回答数: 0
化学 高校生

教えてください🙇🏻‍♀️

次の問題を やってみよう トレーニング問題 □(1) 次の文中の ■にあてはまる文字式や語句を入れよ。 一定温度では、一定量の気体の体積は、圧力にアする。よって、圧力 をP,体積をVとするとイ=k(一定)が成り立つ。これをウの法 則とよぶ。 ア反比例 DIV=P2V2 ウボイル (解答: 別冊P2~) (2) 次の文中の [ にあてはまる圧力の単位記号を記せ。 大気圧は,水銀柱約76cmの圧力とつり合う。 そこで水銀柱76cm の圧力で ある760 アイ と定義した。一方, 1m²に1N (ニュートン) の力 が加わったときの圧力を1 ウと定義しているので、 1イは約 1.013 x 10ラウに等しい。 7 mmHg atm ウ Pa (3) 次の文中の にあてはまる文字式, 語句を入れよ。 一定圧力では,一定量の気体の体積は、絶対温度にアする。よって, 体積をV. 絶対温度を T〔K〕 とするとイ=h(一定) が成り立つ。これ をウの法則とよぶ。 ア反比例イ=ウシャルル (4) 次の文中の にあてはまる文字式, 語句を入れよ。 一定量の気体の体積は、圧力にアし、絶対温度に 体積をV, 圧力をP, 絶対温度を T〔K〕 とすると. 立つ。これをエの法則とよぶ。 T. FREKARI 1 EXABY & Pixvi Ti = P2XV2 T₂ する。よって, (一定)が成り ・エボイル・シャルル □(5)温度〔℃〕 圧力P [Pa] において, ある量の気体がv[mL] を占めるとき、 気体定数をR [Pa・L/ (K・mol)〕として,この気体の物質量を文字式で表せ。 PU=RT

回答募集中 回答数: 0
化学 高校生

答え合わせのために使いたいです 分かるところだけでもいいので教えてください🙇🏻‍♀️

次の問題を やってみよう トレーニング問題 □(1) 次の文中の ■にあてはまる文字式や語句を入れよ。 一定温度では、一定量の気体の体積は、圧力にアする。よって、圧力 をP,体積をVとするとイ=k(一定)が成り立つ。これをウの法 則とよぶ。 ア反比例 DIV=P2V2 ウボイル (解答: 別冊P2~) (2) 次の文中の [ にあてはまる圧力の単位記号を記せ。 大気圧は,水銀柱約76cmの圧力とつり合う。 そこで水銀柱76cm の圧力で ある760 アイ と定義した。一方, 1m²に1N (ニュートン) の力 が加わったときの圧力を1 ウと定義しているので、 1イは約 1.013 x 10ラウに等しい。 7 mmHg atm ウ Pa (3) 次の文中の にあてはまる文字式, 語句を入れよ。 一定圧力では,一定量の気体の体積は、絶対温度にアする。よって, 体積をV. 絶対温度を T〔K〕 とするとイ=h(一定) が成り立つ。これ をウの法則とよぶ。 ア反比例イ=ウシャルル (4) 次の文中の にあてはまる文字式, 語句を入れよ。 一定量の気体の体積は、圧力にアし、絶対温度に 体積をV, 圧力をP, 絶対温度を T〔K〕 とすると. 立つ。これをエの法則とよぶ。 T. FREKARI 1 EXABY & Pixvi Ti = P2XV2 T₂ する。よって, (一定)が成り ・エボイル・シャルル □(5)温度〔℃〕 圧力P [Pa] において, ある量の気体がv[mL] を占めるとき、 気体定数をR [Pa・L/ (K・mol)〕として,この気体の物質量を文字式で表せ。 PU=RT

回答募集中 回答数: 0