学年

教科

質問の種類

数学 高校生

下から4行目のbm+2がなぜ、b1.b3.b5となるのかわからないです。教えてください

重要 例題 数列{an}, {0} の一般項を an=3n-1,b=2" とする。 列{an} の項でもあるものを小さい方から並べて数列{c} を作るとき, の一般項を求めよ。 学ごとに意を元金 数の項のうち、数 数列{col 10g 重要 93, 基本 99 12. 指針 > 2つの等差数列の共通な項の問題(例題93)と同じようにとおすきなうとしてと 関係を調べるが,それだけでは{cm} の一般項を求めることができない。 そこで,数列{an}, {bn} の項を書き出してみると,次のようになる。 {az}:2,5,8, 11, 14, 17, 20, 23, 26, 29,32, {0}:2,4,8,16,32, Ci=b, C2=bs,C3= bs となっていることから, 数列{6} を基準として, 6m+1が数列{c.) の項となるかどうか, bm+2 が数列{a} の項となるかどうか… 見つける。 を順に調べ, 規則性を (1-b)n-bs 104 指 解答 α=2, b1=2であるから C1=2 (14b)(1-B 数列{an} の第1項が数列{6} の第m項に等しいとするとb-b8 3l-1=2m 0-(8-bb ゆえに bm+1=2m+1=2".2=(3-1) ・2 E="b 24 =3.21-2 ① よって, bm+1 は数列{an} の項ではない。 ①から bm+2=26m+1=3・4l-4 - <30-1 の形にならない。 =3(4-1)-1 ゆえに, bm+2 は数列{an} の項である。 したがって {C}:b1,63,65, ...... 数列{c} は公比 2 の等比数列で, C1=2 であるから Cn=2(22)"-1=22n-1 =41 などと答えてもよ い。

回答募集中 回答数: 0
化学 高校生

(6)の問題の答えなのですが、なぜ電子の数は18個なのでしょうか?教えて頂けると助かります!

Ba Fe 2- Da 例題 4 原子とイオンの構造 (1) 塩素原子 CIについて, 35, 17 はそれぞれ何を表しているか。 (2) 塩素原子 C1 について, 陽子, 中性子,電子の数を答えよ。 19.電子配置 (3)(1)と(2)の塩素原子の関係を何というか。 また, 陽子, 中性子,電子のうち、1と2 原子において数が異なるものはどれか。 (4) (1)の原子の電子配置を,例のように記せ。例窒素原子 K(2)L(5) (5)(2)の原子はどのようなイオンになるか。 化学式で記せ。 収容できる電 次の原子の電 (a) He 20. 貴ガス (6)カリウム原子 Kがイオンになったとき, (5) のイオンと同じ数になっているのは、 中性子,電子のどれか。 すべてあげ,その数とともに答えよ。 貴ガス元 貴ガスは 貴ガス 貴ガステ (7)K の中でも,“K の原子核はやや不安定で,放射線を放出して異なる原子核にガ このような性質をもつ原子を何というか。 21. イ 原子番号=陽子の数=電子のカルシ 質量数=陽子の数+中性子の乱」 指針 (1)~(3) 陽子の数で元素が決まる。 陽子の数を原子番 号といい, 元素記号の左下に記す。 陽子と中性子 の数の和を質量数といい, 元素記号の左上に記す。 (4)~(6) 電子はふつう, 内側の電子殻から順に配置されていく。 収容できる電子の最大数 殼2個,L殼8個,M殻18個・・・である。 価電子の数が少ないとそれを失って陽イオン 価電子の数が多いと電子を受け取って陰イオンになる。 解答(1)35:質量数,17:原子番号 (2) 陽子:17, 中性子: (37-17=)20, 電子:17 (3)同位体,中性子 (4)(2)(8)M(7) (5) CI (6) 中性子: 20,電子:18 (7) 放射性同位体 17. 同位体と分子 次の文の なる。 塩素 になる 22. (a

回答募集中 回答数: 0
数学 高校生

◯で囲ってある部分が足し算なのはなぜですか?問題によっては×場合もあるので使い分けを教えて頂きたいです。

子が少なく メー 35 順列組合せと確率 (1) 大人6人と子供3人の合計9人が1列になって山登りをする。 登る順番をくじで決めるとき、 先頭と最後尾が大人にな 率は I 子供3人が全員隣り合う確率は である。 E& [オ] また、子供が必ず大人になる確率は である。 [クケ 袋の中に、白味が1個、赤球が2個、青味が3個、黒球が4個。 合計 10 個の球が入っている。 この袋から同時に3個の を取り出すとき、取り出した球の色がすべて異なる確率は [スセ サシ 取り出した球の色が2種類である確率は [ソダ] である。 また白球は取り出さず、青球を少なくとも1個取り出す確率は である。 [ツテ 男 解答 のうち3が (1)9人が1列に並ぶ並び方は全部で9通り。 P× 71 91 Key 1 このうち、先頭と最後尾が大人になる並び方はP2×71通りであるか ら、求める確率は 71×31 ■る。 Key 1 9! 1 12 また、子供3人が全員隣り合う並び方は71×3通りあるから, 求め る確率は 5 12 61 x P = Key 1 さらに、子供の前後が必ず大人になる並び方は61×5P3通りあるか ら、求める確率は 5 42 Key 1 91 [2]10個の球が入った袋から3個の球を取り出す場合の数は 10 C3 通り 取り出した球の色がすべて異なる確率は, 取り出す球の色を考えて CXCXC₁+CXCXCCXCXC₁+CXCXC₁ 10C3 2・3・4+1・3・4+1・2・4+ 1・2・3 先頭と最後尾の大人の並び方が P2 通り, 残りの7人の並び方 が!通り。 隣り合う子供3人1組と大人 6 人の並び方が7!通り, 隣り合 子供3人の並び方が3!通り。 まず大人6人の並び方が61 通 り、大人の5か所のうち3か 所に子供が並ぶ並び方が & P3 通 り。 3個の球の色は (赤,青,黒), (白、青、黒), (白、赤、黒), (白、赤、青) の場合がある。 2人を 組の2人 細に 120 50 120 5 12 取り出した球の色が1種類となるのは、取り出した球が3個とも青 球の場合と, 3個とも黒球の場合があるから,その確率は がな C+C3 ==== Key 1 10C3 1+4 120 = 1 24 よって、取り出した球の色が2種類である確率は 5 13 + 24, 24 ) Key 2 区 の Key 1 1-( 12 また白球は取り出さず, 青球を少なくとも1個取り出すのは、青球 を1個,赤球と黒球6個の中から2個取り出す場合, 青球を2個, 赤 球と黒球6個の中から1個取り出す場合, 青球を3個取り出す場合 があるから,その確率は 3C X6Cz + 3C2 X 6C + 3 Ca 3・15 +3.6 +1 10 C3 8 120 15 余事象を利用する。 球の色が 2種類となることの余事象は 色がすべて異なる (3種類) か 1種類となることである。 攻攻略のカギ! (事象の起こる場合の数) Key 1 事象A が起こる確率 P(A) は,P(A)= とせよ18 (p.68 (起こり得るすべての場合の数) 事象Aが起こる確率を求めるときは、 起こり得るすべての場合 (全事象) の数と, 事象Aの起こ 合の数をそれぞれ求め、 その比を考える。 確率を求めるときには,扱うもの (球やカード,硬貨やさいころ等)に見かけ上区別がつかなく すべて異なると考えて場合の数を計算することに注意する。 Key 2 事象A が起こらない確率P(A) は, P(A)=1-P(A) を利用せよ 72 オ カキ ク ケ コ

回答募集中 回答数: 0