学年

教科

質問の種類

数学 高校生

全くわかりません どなたか教えていただきたいです!

338 第9章 整数の性質 応用問題 1 正の整数a,bに対して, a を bで割った商をα余りを とする.つ まり、 a=bq+r が成り立つとする.このとき,以下が成り立つことを示せ. (1) aとbの公約数をd とすると,dはbとrの公約数でもある. brの公約数をd' とすると, d' はaとbの公約数でもある. (2) (3) αともの最大公約数とbrの最大公約数は一致する. 精講 ユークリッドの互除法の 「核」 となる p336 の (*) を証明してみま しょう. 考え方としては, 「αと6の公約数」と「brの公約数」 が (集合として) 一致することを示そうというものです. それがいえれば当然, それぞれの最大公約数も等しいといえます. 解答 (1) αと6の公約数がdであるから, a=dA, b=dB (A, B は整数) とおける.このとき d bx 4 (es) bog= bog= (01)bog r=a-bg=dA-dBg=d(A-Bg) dx (整数) なので,rはdの倍数である. (bもdの倍数でもあるので,) dは6とrの公 約数である. (2)との公約数がd' であるから, WAON (ROSS) b=d'B',r=d'R (B', R は整数) とおける.このとき a=bg+r=d'B'g+d'R=d' (B'q+R) d'x (整数) なので, a は d' の倍数である. (bもd' の倍数でもあるので,) d' はαと の公約数である。 (3)(1)(2)より「α と6の公約数」は「bとの公約数」 と(集合として) 一 致する.したがって, それぞれの最大公約数も等しくなるので、題意は示せ た。 おません る 持 る

回答募集中 回答数: 0
数学 高校生

解答では、それぞれの長さを変数でおいてから、相似比で1変数に直していますが、別解として、θを設定して1変数関数として求めることは出来ますか?できれば答えまで示して欲しいです

ENGRENS. 4K 89 重要 例題 104 最大・最小の応用問題 (2) 題材は空間の図形 ①①①① 半径1の球に,側面と底面で外接する直円錐を考える。この直円錐の体積が最 基本 103 小となるとき, 底面の半径と高さの比を求めよ。 指針立体の問題は,断面で考える。→ここでは,直円錐の頂点と底面の円の中心を通る平 面で切った 断面図 をかく。 問題解決の手順は前ページ同様 ① 変数と変域を決める。 2 量(ここでは体積) を で決めた 変数で表す。 3 体積が最小となる場合を調べる (導関数を利用)。 であるが,この問題では体積を直ちに1つの文字で表すことは難しい。 そこで,わか らないものはとにかく文字を使って表し, 条件から文字を減らしていく方針で進める。 50-0 直円錐の高さをx, 底面の半径を r, 解答 体積をVとすると, x2 であり A TATR)S (高さ)> (球の半径) x2 から。 7= ...... ① x 3 D 球の中心を0として,直円錐をその 頂点と底面の円の中心を通る平面で 切ったとき,切り口の三角形ABC, および球と △ABC との接点 D, E を 右の図のように定める。 (Onie-nia +(1+8203)8 200/ △ABE∽△AOD (*) であるから AE: AD=BE:OD B --E C (*) △ABE と △AODで ∠AEB= ∠ADO=90° ∠BAE = ∠OAD (共通) 26 すなわち x:√(x-1)2-12=r:1 (1+0 2000 2001 0200S) (1+0 200) 対応する辺の比は等しい。 AD は, 三平方の定理 を利用して求める。 x よって r= 2) √x²-2x ②①に代入して V=π 2 x π x •x= 3 dV π2x (x-2) -x2・1 x-2 πx(x-4) • 3(x-2)2 よって dx = 17 3 (x-2)2 dv = 0 とすると, x>2であるから x=4 dx x>2のときVの増減表は右のようになり、 体積 V はx=4のとき最小となる。 このとき, ②から r=√2 ゆえに, 求める底面の半径と高さの比は r:x=√2:4 Vをx (1変数) の式に 直す。 () u'v-uv v.2 x 2 4 dv 4 20 dx V 極小 +

解決済み 回答数: 1