学年

教科

質問の種類

数学 高校生

図形と方程式の問題です (3)の色の着けたところがよく分かりません。点Pの1つが点Aであるのは何故ですか?解説読んでも分かりませんでした。

頂き を の 部 Y4 図形と方程式 (50点) 0を原点とする座標平面上に, 中心が点 (3, 1) でx軸に接する円Cがある。また、原 点からに引いた接線のうち,傾きが正であるものをとし,Cとlの接点をAとする。 (1) Cの方程式を求めよ。 (2) lの方程式を求めよ。 (3)は,中心がy軸上にあり,点AでCとlに接している。 Dの方程式を求めよ。ま 点PはD上の点であり, OP =3を満たしている。点Pの座標を求めよ。 配点 (1) 10点 (2) 18点 (3) 22点 解答 (1) Cの中心が点 (31) であり, Cはx軸に接するから,Cの半径は, C の中心のy座標に等しく, 1である。 x軸に接する円の半径は、円の 心のy座標の絶対値に等しい。 したがって, Cの方程式は (x-3)2+(v-1)2=1 圏 (x-3)2 +(x-1)²=1 (2) 解法の糸口 Cとl が接することを, 2次方程式が重解をもつ条件に読み替えて考える。 lは原点を通る傾きが正の直線であるから,その方程式は y=mx(m>0) と表される。 C と l が接するとき,これらの方程式からyを消去して得られるxの2次 方程式 (x-3)2+(mx-1)=1 は重解をもつ。 ①を整理すると (x2-6x+9)+(m2x2-2mx+1)=1 (m²+1)x2-2(m+3)x+9=0 ①'の判別式をDとすると2=0であり D 121=(m+3)2-9(m2+1)= 0 -8m²+6m=0 -2m (4m-3)=0 3 m = 0. 4 3 m>0より m = 4 したがって、lの方程式は y= [(2)の別解〕 (3行目まで本解と同じ) 3-4 3 y=x NA A ROS C EL 10 3 x ◆円と直線の方程式からyを消去し て得られるxの2次方程式を ax2+bx+c=0 とし、その判別式をDとすると, D=62-4ac であり 円と直線が接する ← 2次方程式が重解をもつ ⇔D=0 D また,b=26' のとき 1241=b2-ac

回答募集中 回答数: 0
地学 高校生

地学基礎の問題です! 問2の問題で単位をmmやkmは どのように考えられているのかを教えてほしいです!! よろしくお願いします🙇🏻‍♀️

重要演習 重要例題 1 地球の大きさ 5分 紀元前3世紀,エラトステネスは,ナイル河口のアレキサン 北極 ドリアで夏至の日の太陽の南中高度を測定して、太陽が天頂よ り 7.2° 南に傾いて南中することを知った(図)。 また, アレキサ ンドリアから5000 スタジア*南にあるシエネ (現在のアスワン) では、夏至の日に太陽が真上を通り, 正午には深い井戸の底ま で日がさすことが当時広く知られていた。 これらの事実から, 彼は地球一周の長さを 7.2% アレキサンドリア 太陽光線 シエネ 赤道 7.2° ] スタジアであると計算した。 *スタジアはエラトステネスの時代の距離の単位 問1 上の文章中の空欄に入れる数値として最も適当なものを,次の①~④のうちから一つ選べ。 ① 22000 ②25000 ③ 40000 ④ 250000 問2 一周4m(直径約1.3m)の地球儀を考える。この縮尺では世界で最も高いエベレスト山(チョ モランマ山)の高さ (8848m)はどれくらいになるか。 最も適当なものを,次の①~④のうちから 一つ選べ。 ただし, 地球一周は約40000kmである。 ① 0.9mm ② 9mm ③ 90mm [2000 本改] ④ 900mm が成りたつ。 問2 地球儀の山の高さをx[mm], 地球儀の円周を [mm], 山の高さをん [km], 地球の円周をL [km] とす h ると x:l=h: L となるから x = 1× L 考え方 問1 地球を完全な球と考えると, 同一経線 上の2地点間の緯度差が 0 [℃], 距離がdのとき,地球 の円周をLとすると d:L=0:360° これを変形してL=d× 360° 緯度差は,太陽の南中高度の差 7.2° に等しいから 360° L = 5000 x = 7.2° 250000 スタジア l=4m=4000mm,h=8848m≒9km, L=40000km より x = 4000x = 0.9mm 40000 解答 問1④ 問2 ①

解決済み 回答数: 1
1/1000