学年

教科

質問の種類

物理 高校生

問3で私の答えが5番になったのですが答えは2で、どこが違ってきているか分かりません。

- Cosy) 9 0 分 直後での運動量保 **第18問 次の文章を読み、下の問い (問1~3)に答えよ。 (配点 12 【10分 図1のように水平な床の上に半頂角0の円錐をその軸が鉛直になるように固定 した。円錐の頂点から質量mの小球が長さの軽い糸でつるされており、円錐 と接しながら角速度で等速円運動をしている。 糸は伸び縮みせず。円錐面はなめ らかである。ただし、重力加速度の大きさをgとする。 とする 0 問 等速円運動の周期はいくらか。 正しいものを、次の①~⑥のうちから一 つ選べ。 T= 1 会 20 mgsin+lucos²8) O' m (gcose + lu'sin¹0) 2x W w² (r-mlsing) = gross and rw²³-mew singsing cos 問2 小球が糸から受ける張力の大きさSはいくらか。 正しいものを次の①~8 のうちから一つ選べ。 S 2 17 W 2x 2 m (gsinf-lo cos³0) mr W=gsind cost + me ursing 4mgcost-la'sin³0) mairt (gos + sin() W² = [sing wire w f =mrw² (0) (050)-1) b = 2,415 M Tsint F Tco₂0 mg J 20 I (groso + lu² sino) cost = g U₁² 11 groso sino 問3 をいろいろ変えて小球を等速円運動させるとき、小球にはたらく垂直抗力 の大きさは図2のように変化した。 図2のc)はいくらか。 正しいものを、下 の①⑤のうちから一つ選べ。 03 m = mg sing w²=lgsing 〒53 0 mr 4 masin mg (050+ lw²siño) = [ 9 V Isin __w² T mut sing gcos T mg sine + N mg coso 2 QF mg 1030 Im CO₂O mg Burg mycose + ml wsing T T my co me sinfu = ((stein² ou ² ) 9 Icos my cosp 図2 Ex mg = m + cos w² g r como e COD w² mgsing N mesingumasing macoso I + me sinow sint ex=lsing gsin 1 Tsing BSAJN + == T-mg cose my 00 Aug Tcose + Nsin0 = mg) Ttanf Too 30 My he ca = 3 mrw² mg _ru tand: g w² wid. ₂N

回答募集中 回答数: 0
物理 高校生

なぜ⑴では空気の屈折率を文字で置いてるのに、⑷は屈折率1で考えてるのか教えてください。

|30| 光通信などに使用される光ファイバーでは、光の全反射現象などが利用されている。 その原 理を図のような円柱状媒質のモデルで考えよう。 円柱の中心軸からある半径までの部分は屈折 率(絶対屈折率nの媒質Iであり,その外側は屈折率nの媒質ⅡIである。円柱の端面は中心 軸と垂直であり、図は,円柱の中心軸を通る平面で切った断面図である。 この平面内で , 空気 中から円柱の端面の中心点Aに入射角で入ってくる光が, 屈折して円柱内に入り, その後ど のように伝わるかを調べる。 屈折率の間には、 常に nnn (no は空気の屈折率) という 関係があるものとして, 以下の設問に答えよ。 (1) 光が媒質I と媒質ⅡIの境界面で全反射をして, 媒質Iの中だけを伝わるためには,入射角 はどのような条件を満たせばよいか。 sin0 についての不等式で示せ。 (2) 屈折率の大きさによっては,入射角をどのように選んでも光が媒質 ⅡIの中に入れないこ とがある。 そのようなことが起こらずに, 光が媒質ⅡIの中にも入ることができるためには, 屈折率の間にどのような関係があればよいか。 (3) 屈折率の間に設問 (2)で求めた関係がある場合, 光が媒質ⅡIの中には入るが円柱の外には出 ないためには,入射角0はどのような条件を満たせばよいか。 (4) 光が点Aに入射角で入射し, 媒質Iの中を全反射しながら光ファイバーの長さの方向 に距離だけ進む時間を求めよ。 ただし, 真空中での光速度をcとする。 空気 no 0 A no N2 "n₁" n2 空気 媒質 ⅡI -媒質Ⅰ 媒質 Ⅱ

回答募集中 回答数: 0
物理 高校生

おもりが棒と円盤から受ける力の大きさが垂直抗力なのはなぜですか?

40章 力学 発展例題 9 円盤上の円錐振り子 高さHの支柱に, 長さがL, 質量が無視できる細い棒の上 端を固定し、 他端に質量mのおもりをとりつける。 水平でな めらかな円盤上で 支柱を中心として, おもりを角速度ので 回転させる。 棒と支柱の間の角は, 自由に変えられるとする。 重力加速度の大きさをgとして,次の各問に答えよ。 (1) おもりが,棒と円盤から受ける力の大きさを求めよ。 (2) 指針 (1) 地上で静止した観測者には, おもりは,重力, 棒からの力, 円盤からの垂直 抗力を受け,これら3力の合力を向心力として, 水平面内で等速円運動をするように見える。 向 心力 (合力) は円の中心向きとなるので, 棒から は引かれる向きに力を受ける。 この場合の向心 力は,棒から受ける力の水平成分である。 (2) 円盤からはなれる 直前で, おもりが受け る垂直抗力が0となる。 (1) の結果を用いる。 解説 (1) 棒が おもりを引く力を S, 円盤からの垂直抗力を Scose, N. mg S Ssin はなれる直前のを求めよ。 を大きくすると,おもりは円盤からはなれる。 Y H L m METS 発展問題 H 発展例題10 円錐容器内の運動 z軸を中心軸とする頂角20の円錐状の容器がある。 容器の内 細に具の小球があ 容器の底に小さな N, 棒と支柱とのなす角を0とする。円運重力加速 半径をrとすると,r=Lsin0 なので,半 (1) 質点 (2) 質点 向の運動方程式は, mrw²=Ssine (3) この 用いて したがって, S=mLw² また、鉛直方向の力のつりあいから, Scos0+ N-mg=0 (4) 質点 COSO=H/LとSを代入して N を求めると このと N=mg-Scos0=mg-mLw²・HIL 発展 63. 物体の 端に,質量 する。 図の 内で質点王 と糸のなす とし、 管 m (Lsind) w²=Ssinf = m(g-w²H) (2) (1)のNが0となるωを求めればよい。 4. 円筒 0= m (g—w²H) これから, w= なめ た,質量 置かれ 物体を担 さだけ ばねから 2 H 発展問題 63,

回答募集中 回答数: 0
1/2