学年

教科

質問の種類

物理 高校生

⑴の解説の赤線を引いているところなのですが、マイナスになるのはなぜですか? 教えてください🙏

発展例題 5 斜 図のように、傾斜角0の斜面上の点Oから、斜面と垂直な 向きに小球を初速。 で投げ出したところ, 小球は斜面上の 点Pに落下した。 重力加速度の大きさをgとして,次の各問 に答えよ。 ■ 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 解説 (1) 小球を投げ出してから, 斜面から最もはなれるまでの時間を求めよ。 部 (2) OP間の距離を求めよ。高 (1) 斜面に平行な方向 にx軸, 垂直な方向に y軸をとる (図)。 重力 加速度x成分,y成 分は,それぞれ次のよ うに表される。 0 y -gcoso x gsine g Vo gcoso P x 成分 : gsino 成分: -gcose 方向の運動に着目する。 小球が斜面から最も はなれるとき, 方向の速度成分vy が 0 となる。 求める時間を vy=v-gcose.t」 とすると, の式から, 平水 0=vo-gcoso・t t₁ = (2) Py=0 の点であり, 落下するまでの時間 Puti をたとして, 「y=uot-1/21gcose.12」の式から, 1 0=vot2gcost₂² ACT DE Chat 0=t(v-gcose-t₂) 01 2 JEST t0から、 ら t₂ = 200 g cose TRY OP間の距離は、 1 x= gsinO・t22= Vo RECO(S) ( 1 x 方向の運動に着目すると,x=- = 2v2" tan0 I TREg cose 0 =1/29sino. 9 sine t 200 gcose PENSE Point 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y = 0 からy方向 の最高点に達するまでの時間と, 最高点から再 びy=0 に達するまでの時間は等しく, t=2t として tを求めることもできる。

解決済み 回答数: 1
物理 高校生

⑵です。 赤下線部って0になりますか? 他の回答など見ると0なのでどうして0になるか教えてもらいたいです。

発展例題5 斜面への斜方投射 物理 図のように,傾斜角0の斜面上の点Oから, 斜面と垂直な 向きに小球を初速。 で投げ出したところ、小球は斜面上の 点Pに落下した。重力加速度の大きさをg として,次の各問 に答え 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 解説 (1) 斜面に平行な方向 にx軸、垂直な方向に y軸をとる (図)。重力 加速度x成分,y成 分は,それぞれ次のよ うに表される。 (1) 小球を投げ出してから、斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 y -gcost. gsino y成分:-gcose x 成分 : gsino 方向の運動に着目する。 小球が斜面から最も はなれるとき, 方向の速度成分 by が 0 となる。 求める時間をとすると, vyvo-gcosd・tの 式から, 0=vo-gcosot t₁ =- Vo gcoso (2) Py=0 の点であり, 落下するまでの時間 をたとして, y=vot-1/2gcoso.2の式から, 発展問題 0=vot₂-19 cost 10=t₂ 8-(5-90058-1₁) Vo coso.12 t> 0 から, t₂ = 2vo gcoso x 方向の運動に着目すると, ら, OP間の距離xは, 発展問題 48,52 Vo 0 11/13gsi x= gsino・t2か 0 1 29 sine.t₂²= 2v² tan0 gcoso QPoint y方向の等加速度直線運動は,折り 返し地点の前後で対称である。 y=0 から 方 向の最高点に達するまでの時間と、最高点から 再びy=0 に達するまでの時間は等しく, t=2tとしてt を求めることもできる。 200 19 sine. (cose ) P

解決済み 回答数: 1
1/13