学年

教科

質問の種類

物理 高校生

(2)の解説のSsinθ=mgtanθはどこから来たのでしょうか。また、円運動の半径がLsinθになるのも全くわかりません。どなたか助けてください。

C/ 基本例題29 円錐振り子 わかんない 基本問題 解説動画 第Ⅱ章 力学Ⅱ 図のように,長さLの糸の一端を固定し,他端に質量m のおもりをつけて, 水平面内で等速円運動をさせた。糸と 鉛直方向とのなす角を 0, 重力加速度の大きさをgとして 次の各問に答えよ。 (1) おもりが受ける糸の張力の大きさはいくらか。 00 m(Lsine) w²=mg tane w= 円 g L cose 2π L cose =2π 周期 Tは, T=- (2) 円運動の角速度と周期は,それぞれいくらか 地上で静止した観測者には, おもり |指針 は重力と糸の張力を受け,これらの合力を向心力 として,水平面内で等速円運動をするように見え ある。この場合の向心力は糸の張力の水平成分であ (1)では,鉛直方向の力のつりあいの式(2) では円の中心方向 (半径方向) の運動方程式を立 てる。なお,円運動の半径はLsinである。 解説 m 別解 stic (1) 糸の張力の大き さをSとすると, 鉛 直方向の力のつりあ いから, 10 L Scost S (2) おもりとともに 円運動をする観測者の にはSの水平成分 ・ と遠心力がつりあっ てみえる。 力のつり あいの式を立てると LA m (L sine) w² S +0. Ssin0=mg tan mg 0 Scoso-mg=0 Ssine mg mg S= coso (2) 糸の張力の水平成分 Ssin0=mgtan0 が向 心力となる。 運動方程式 「mrw²=F」から, (2) の運動方程式と同じ結果が得られる。 m(L sine) w²-mgtan0=003 (1) Point 向心力は、重力や摩擦力のような力の 種類を表す名称でなく,円運動を生じさせる原 因となる力の総称で、常に円の中心を向く。 4

解決済み 回答数: 1
物理 高校生

高校物理電流と磁場の質問です 磁場の向きを考える時で右ねじの法則を使う時、HaベクトルとPAがなす角は90°と決まっているのですか?鉛筆で書いたような、HaベクトルとHbベクトルがなす角が60°にはならないのですか?

267 直線電流がつくる磁場の合成 十分に長い2本の導線 A,Bを2d [m] 離して平行に張る。 図のように,Aには紙面の 裏から表の向きにI [A] の電流を,Bには表から裏の向きに I [A] の電流を流した。図中の点Pでの磁場の強さ H [A/m] を 求めよ。 P 60° 例題 55 \60 60° 2d 267 B8 十分長い直線電流I〔A〕 が距離[m] の点につくる磁場は、 電流の向きに右ねじが進むようにねじ を回す向きで,その強さは H= [Am] となる。 磁場はベクトルであるから、点Pでの磁場は各 ここがポイント 2πr [VIT 直線電流がつくる磁場を合成して求める。 導線Aと導線Bが点Pにつくる磁場とは 右図のようになる。 導線Aと導線Bに流れる電流 はどちらも「[A] で, AP-BP=2d[m] である から、点Pにつくる磁場の強さは直線電流がつく る磁場の式 「H=- H HA HB 30° 30° より 2πr 60 I I HA=Hn= = [A/m] 2×2d And 点での磁場は,Hと77日を合成した磁場で -2d- B に平行な方向の成分は同じ大きさで逆向きなので打ち消しあい, 合成磁場 の向きは線分ABに垂直上向きになる。 H』とπの線分AB に垂直な 方向の成分は Dを Hasin30°=Hasin30°=ax/[A/m]5 であるから, 点Pでの磁場の強さは 1 別解 下図のように、 磁場 と君がな す角は60°である。 Hは豆 とTBを2辺とする平行四辺 形の対角線なので ∠PRQ=60° となり, △PQR は正三角形である。 ゆえに H=H= -[A/m] 4nd R 60H 60° 60° 060° #ダイ I 1 I H=2x = 4rd 2 And [A/m] (1+1)×0.0+0 HA H B P S

未解決 回答数: 0
1/88