学年

教科

質問の種類

物理 高校生

(2)の解説にW=−0.50×1.0×9.8×l=−4.9 とありますがWの硬式はW=fxなのに何故9.8や動摩擦係数が入ってくるのですか? 何故そのあと 1/2×1.0×0²-1/2×1.0×7.0²=−4.9l l=7.0²/2×4.9 という式になるのですか? 物理基... 続きを読む

基本例題 24 保存力以外の力の仕事 点Aを境に左側がなめらかで右側があ らい水平面がある。 点Aより左側のなめ らかな水平面上で, ばね定数100N/m の ばねの一端を固定し,他端に質量 1.0kg -0.70m→ [-00000 自然の長さ→ 109,110 解説動画 -I [m〕- A あらい水平面 B の物体を置く。 ばねを 0.70m だけ縮めて手をはなすと, 物体はばねが自然の長さ になった位置でばねから離れた。重力加速度の大きさを9.8m/s2 とする。 (1) 物体がばねから離れるときの速さは何m/sか。 物体はばねから離れた後右に進み, 点Aを通過して点Bで停止した。 (2) 物体とあらい面との間の動摩擦係数が 0.50 のとき, AB間の距離は何mか。 指針 (2) 力学的エネルギーの変化=動摩擦力がした仕事 (W=-Fx) 解答 (1) 最初に物体のもつ弾性力による位置エ ネルギーはU=1/12/ -×100×0.702J ばねから離れた後に物体のもつ運動エ ネルギーは K=1×1.0×2 [J] ゆえにv=√100×0.70°=7.0m/s (2) 動摩擦力が物体にした仕事は W=-0.50×1.0×9.8×l = -4.92 [J] 物体の力学的エネルギーの変化= W より 1/12×1.0×0°-12×1.0×7.0°=-4.9ℓ 力学的エネルギー保存則より 7.02 ゆえに1= -=5.0m +1/2×100×0.70°= 1/2×1.0×μ+0 2×4.9

解決済み 回答数: 1
物理 高校生

物理基礎です。解説にある(2)のwって文字で表した公式はなんですか?

基本例題 24 保存力以外の力の仕事 点Aを境に左側がなめらかで右側があ らい水平面がある。 点Aより左側のなめ らかな水平面上で, ばね定数100N/m の ばねの一端を固定し,他端に質量 1.0kg -0.70m→ 00000 自然の長さ 109,110 解説動画 -/ 〔m〕 A あらい水平面 B の物体を置く。 ばねを0.70mだけ縮めて手をはなすと, 物体はばねが自然の長さ になった位置でばねから離れた。 重力加速度の大きさを 9.8m/s? とする。 (1) 物体がばねから離れるときの速さは何m/s か。 物体はばねから離れた後右に進み, 点Aを通過して点Bで停止した。 (2) 物体とあらい面との間の動摩擦係数が0.50 のとき, AB間の距離は何mか。 指針 (2) 力学的エネルギーの変化=動摩擦力がした仕事 (W=Fx) 解答 (1) 最初に物体のもつ弾性力による位置エ ネルギーはU=1/12/2 -×100×0.702 J ばねから離れた後に物体のもつ運動エ ネルギーは K= 1=1 - ×1.0× v2 [J] ゆえにv=√100×0.702=7.0m/s (2) 動摩擦力が物体にした仕事は W=-0.50×1.0×9.8×l= -4.9 [J] 物体の力学的エネルギーの変化= W より 1/12×1.0×0-1/23×1 ×1.0×7.02=4.9 力学的エネルギー保存則より +1×100×0.70°= ゆえに1=- P2=1/2x - ×1.0×2+0 7.02 2×4.9 =5.0m

解決済み 回答数: 1
物理 高校生

(2)についてです。なんで、W🟰ーFxの式使うと分かるんでしょうか。 あと(2)の解説部分の緑の式が分かりません。 教えてください💦

例題26 保存力以外の力の仕事 点Aを境に左側がなめらかで右側があらい水平面がある。点A より左側のなめらかな水平面上で, ばね定数100N/m のばねの一 端を固定し, 他端に質量 1.0kgの物体を置く。 ばねを0.70mだけ。 「縮めて手をはなすと, 物体はばねが自然の長さになった位置でば 「ねから離れた。 重力加速度の大きさを9.8m/s2 とする。 (1)物体がばねから離れるときの速さ”は何 m/s か。 物体はばねから離れた後右に進み,点Aを通過して点Bで停止した。 第5早 仕事と 解説動画 ➡66, 67 -0.70m- -1[m]- B あらい水平面 自然の長さ (2)物体とあらい面との間の動摩擦係数が0.50 のとき,AB間の距離 1 は何m か。 指針 (2) 力学的エネルギーの変化=動摩擦力がした仕事 (W=-Fx) 解答 (1) 最初に物体のもつ弾性力による位置エネル ギーはv=1/2/3 - × 100 × 0.702 J ばねから離れた後に物体のもつ運動エネルギーは K=1/2x1.0×2 [J] 力学的エネルギー保存則より 0+ 2 ×100×0.70=1/12×1.0×2+0.8m/ v²+0 ゆえに v=√100×0.702=7.0m/s (2) 動摩擦力が物体にした仕事は W=-0.50×1.0×9.8×l= -4.97 [J] 物体の力学的エネルギーの変化=W より 1 -×1.0×02- -×1.0×7.02=-4.9 2 7.02 ゆえに 1= -=5.0m 2×4.9 0.2

未解決 回答数: 1
物理 高校生

物理基礎の力のつり合いの問題です。基本例題8で、ボールに働く力についてで、いくつか質問があります。 ①Fはバネを右に引いた力と同じですか? ②ボールを右に引く力が働いたら、その反作用でボールが左にバネを引く力がないのはなぜですか? 作用反作用がいつ働くのかがいまいちわかって... 続きを読む

例題 解説動画 基本例題8 力のつりあい 基本問題 58,596465666768 軽い糸の一端を天井につけ、 他端に重さ 2.0Nの小球 をつなぐ。この小球に, ばね定数10N/m の軽いばねの 一端を取りつけ,他端を水平方向に静かに引いた。 糸が 鉛直方向と60°の角をなして小球が静止しているとき 力の ばねの自然の長さからの伸びは何mか。 C 2.0N 10N/m 60° 00000 指針 小球は、重力, ばねの弾性力, 糸の 張力を受けて静止しており,それらはつりあって いる。 ばねの弾性力をF[N], 糸の張力をT〔N〕 と すると, 小球が受ける力は図のように示される。 力を水平方向と鉛直方向に分解し, 各方向におけ る力のつりあいの式を立てる。 これからFを求め, フックの法則を利用してばねの伸びを求める。 水平方向:F- T=0 2 鉛直方向: T 2 --2.0=0…② | 解説 水平方向, 鉛直方向のそれぞれの力 のつりあいから, √3 T[N] √ T(N) 30° 720 [N] 式 ②から,T= 4.0Nとなり,これを式①に代入し てFを求めると, F=2.0√3N ばねの伸びを x[m] とすると, フックの法則 「F=kx」 から, F 2.0√3 x= 2.0×1.73 10 10 -=0.346m 0.5m Point F〔N〕 小球にはたらく3つの力がつりあって いるとき,水平方向と鉛直方向のそれぞれの成 分もつりあっている。 V2.0N 基本例題 9 ばねと作用・反作用 同じばね定数の2つの軽いばね A, B を用意する。 ばね Aの一端を壁に取りつけ, 他端におもりをつるして静止さ せる。一方, ばねBは,その両端にそ して静止 基本問題 71, 72,73 LA 0000000000 [知識] 57. 重さと質量 基本 地球上の重力加速度の大き 大きさを地球上の1であるとして、次の各 (1)地球上での重さが294Nの物体の質量に (1)の物体が月面上にあるとき,その質 (3)(1)の物体が月面上にあるとき,その重 [知識 58. 糸の張力 図のように, 質量 1.0kg のお て静止させた。 このとき, おもりが受ける ただし, 重力加速度の大きさを9.8m/s2 と [知識 59. ばねの弾性力 自然の長さ 0.200mの軽 さが 0.240mになった。 重力加速度の大きさ (1) ばねのばね定数を求めよ。 (2) ばねに質量 5.0kgの物体をつるすと, ヒント ばねの弾性力の大きさは, ばねの伸びに上 思考 60. ばねのつりあい 表は,軽いばねにさ おもりをつるし、ばねの自然の長さからの ものである。重力加速度の大きさを9.8m/s 各問に答えよ。 (1)自然の長さからのばねの伸びx[m]を 弾性力 F〔N〕を縦軸にとったグラフを描い (2)

回答募集中 回答数: 0
物理 高校生

1番最後の問題が分かりません。図などで分かりやすくしてもらえるとありがたいです!

必修 (BURON TE 基礎問 49 気柱の共鳴 物理基礎 図のように、円の断面をもち太さが一様な管の右からピストンを入れ、ピ ストンを移動させてこの閉管の長さを自由に変えられるようにする。 管の左側に、その開口端に向けて音波を出す音 源を置く。音源から振動数一定の音波を出し, ピストンで閉管の長さを変えると共鳴が起こり 管内に定常波ができる。この定常波の波形を表 さらに, CCC" 音源 管 ピストン すために,管の左の開口端の中心に原点Oをとり,管の中心線を軸に、こ れと垂直に軸をとる。 波形は, 空気の軸の正の向きの変位はy軸の正の 向きに,z軸の負の向きの変位は”軸の負の向きにおき換えて表す。空気中 の音速を 340 〔m/s〕 として,以下の問いに答えよ。ただし,開口端と定常波 の腹とのずれは無視するものとする。 (6)(1) I. 音源から振動数 f〔Hz] の音波を出したとき,管の長さが1〔m〕のとき 共鳴して管内に図のような波形の定常波ができた。ただし,現在より 4.00×10-3 秒前のときの空気の変位の波形は曲線 C” で,現在より、 200×10-3秒前のときの空気の変位の波形は管の中心線と一致する直線 C′で,さらに,現在の空気の変位の波形は曲線Cで表されている。なお, この間に同じ状態が現れることはなかったものとする。 (1) 音波の振動数f [Hz] を求めよ。 (2)管の長さ [m] を求めよ。 の関係式を! (3)現在の時刻で, 管内の空気が最も密になっている場所の開口端からの 距離を l 〔m〕 を用いて表せ。 Ⅱ.次に,音源から別の振動数の音波を出したとき, 閉管の長さをlo [m〕 に すると共鳴した。このときの定常波の節の数はn個であった。 その後,さ らに管の長さを少しずつ長くしていったとき,長さが [m] で次の共 7 Zo 鳴が起きた。 (4) 管の長さが 〔m〕 のとき生じたn個の節がある定常波の波長をnと lo 〔m〕 を用いて表せ。 また,音源の出した音波の波長をLo [m] のみで表せ。 JOP 管の長さが1/3 〔m] のとき生じた定常波の節の数をnを用いて表せ。 (奈良女大 )

回答募集中 回答数: 0
1/12