学年

教科

質問の種類

物理 高校生

【至急】 4️⃣(3)、(4)全く解き方が分からないので教えてください。

を答えよ。 39. (2) 地面に落下する位置は、投射点から水平方向に何mはなれているか答えよ。 4 重さ、長さLの一様な棒ABの一端Aを摩擦の ある壁につけ、反対の端Bに糸を結び、その糸を壁の 点Cに固定し棒を水平に保った。 以下の問いに答えよ。 ただし、棒と壁の間の静止摩擦係数はμとする。 f (1) 樺ABにはたらく力を回答欄の図に書き入れよ。 ただし、糸の張力の大きさをT A端でうける垂 A f=w- 3ヶ T = W. & 2 W-W-P 30° B 3 直抗力の大きさをN A端でうける摩擦力の大きさをfとする。 (2) 棒にはたらく力のつりあいを 鉛直成分と水平成分に分けて書き下せ。 ただし、 W,T,N, fから必要な文字を用いよ。 (3) 点Aまわりのモーメントの和が0であることを表す式を書き、NT, f をW を用 いて答えよ。 (4) 図のように棒が水平を保つために必要な、静止摩擦係数μの最小値を答えよ。 た だし、 答はルート、 分数のままでよい。. 5 √3 IW-X7 す √3 (W-f) 3 高さで密度が一様な直方体を、長さαの 底辺が斜面に沿う向きに平行になるようにし て、傾斜角 0 のあらい斜面上に置く。 このと 以下の間に答えよ。質量はmとする。 a b W-f

回答募集中 回答数: 0
物理 高校生

途中式と共に解答をわかりやすく教えて欲しいです。 とても急いでいます。 図々しいですが、よろしくお願いします。

[注意事項] ○ 解答欄の[ ] 中に単位を忘れずに記入すること。 ○ 計算の結果は小数で答え, 割り切れない場合は小数第3位を四捨五入して答えなさい。 文字を含む解答・倍数を答える場合は分数で解答すること。 有効数字は考慮しなくてもよい。 20.50g 1. 図の実線波形は、x軸の正の向きに進む正弦波 [m]↑] の 時刻 t=0s のようすを示したものである。 実線波形が最初に破線波形のようになるの に, 0.50s かかった。 次の各問に答えよ。 (1) 時刻 t=0 のとき、 波の山はどの位置か。 0≦x≦10mの範囲で、 すべて答えなさい。 y[m〕↑ 0.2 -0.2 O -0.50 (2) 時刻 t=0s のとき、x=4mの媒質はどの様な振動状態か。 [静止・上向きに移動 ・ 下向 きに移動]から答えなさい。 (3) 時刻 t=0s のとき、 0≦x≦10mの範囲で、x= 0m と同位相の位置と逆位相の位置を答 えなさい。 0.5…..6 [~~-12 12=fX (4) 波の振幅,波長, 速さ,振動数を、 それぞれ求めなさい。 +=15 (5) 時刻 t=0.50s におけるx=34m の変位を求めなさい。 34÷6=5…..4 (6) 次の文章は波について述べた文章である。 ア~ウに入る適切な語句を答えなさい。 図 1 『物体の一部に生じた振動が次々と伝わる現象を波または波動という。 振動の方向と、波の進行方向が垂直な波を(ア)といい、振動と波の進行方向が平行な 波を(イ)という。(イ)は(ウ)とも呼ばれる。』 [x[m〕 2. x軸の正の向きに伝わる正弦波がある。 図1は時刻 t=0 の波形,図2はある位置における 媒質の時間変化を表している。 (1) 波の周期を答えなさい。 01 (2) 波が伝わる速さを求めなさい。 V- 2 2 20 ふく (3) 図2で表される振動をしている位置は、図1のどこか。 0≦x≦2.0m の範囲で答えよ。 y[m〕↑ 0.2 -0.2 波の進む向き A 図2 dey 0.05 〔m〕 1: t[s] 0 0.05 0.1

回答募集中 回答数: 0
物理 高校生

問9で、sinθ=√3/4なのは何故ですか?

例題 2 屈折波の波面 図のように,平面波が境界面に達した。 屈折 波の波面を作図せよ。 ただし, 媒質 I に対す る媒質ⅡIの屈折率を2 とする。 2 (+式 (9)) から, 01=n12=2 V₂² V₁ T 境界面 -= 1212 V₁ 指針 屈折の法則 -=n1z(p.152・式(9))から, 媒質ⅡIにおける波の速さが,媒質 V2 Iにおける速さの何倍になるかを求める。 ホイヘンスの原理にもとづいて素元波を描 き, 屈折波の波面を作図する。 解 媒質 I, I における波の速さをそれぞれ v1, v2 とすると, ma 逆の屈折る V₁ V2 V2 であり、媒質 Ⅱ における波の速さは, 媒質 Ⅰ における速さの1/12/2になる。図のように,B2 からAB におろした垂線とA,B との交点 B2C の素元波 (半 をCとして, B, から半径 円) を描く。 このとき, B2 からこの素元波に 2 引いた接線が, B2 を通る屈折波の波面となる。他の波面は,入射波の波面と境界面の『 交点から,この接線に平行な線を引くことで求められる。 B1 B2C 2 B2 入射波 の波面 媒質 Ⅰ A2 媒質 ⅡI] 屈折波 の波面 入射波 の波面 媒質 Ⅰ 媒質 Ⅱ 問9 類題例題2で,入射波の波面と境界面のなす角を60° とする。このときの屈折角 を0として,sin0 の値を求めよ。答えは分数のままでよく, ルートをつけたままでよい。 8 平面波 障害物に を送ると, にまわりこ 回折は, 部分にも すき間 (a))。 した る (図 波長よ の

回答募集中 回答数: 0
1/4